Check for
updates

R DIGITAL Assaciaionfoe
acm B PE RIS - @m open)
£ Latest updates: https://dl.acm.org/doi/10.1145/3680207.3723482

RESEARCH-ARTICLE
WinSpy: Cross-window Side-channel Attacks on Android's Multi-
window Mode

ZENG LI, Shandong University, Jinan, Shandong, China

CHUAN YAN, The University of Queensland, Brisbane, QLD, Australia
LIUHUO WAN, The University of Queensland, Brisbane, QLD, Australia
HUI ZHUANG, Shandong University, Jinan, Shandong, China

PENGFEI HU, Shandong University, Jinan, Shandong, China
GUANGDONG BAI, The University of Queensland, Brisbane, QLD, Australia

View all

Open Access Support provided by:
The University of Queensland
Shandong University

: PDF Download
j;b 3680207.3723482.pdf
< 25 December 2025
Total Citations: 0
Total Downloads: 332

Published: 03 November 2025
Citation in BibTeX format

ACM MOBICOM '25: 31st Annual
International Conference on Mobile
Computing and Networking
November 4 - 8, 2025

Hong Kong, China

Conference Sponsors:
SIGMOBILE

ACM MOBICOM '25: Proceedings of the 31st Annual International Conference on Mobile Computing and Networking (November 2025)

https://doi.org/10.1145/3680207.3723482
ISBN: 9798400711299

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3680207.3723482
https://dl.acm.org/doi/10.1145/3680207.3723482
https://dl.acm.org/doi/10.1145/contrib-99661765185
https://dl.acm.org/doi/10.1145/institution-60031031
https://dl.acm.org/doi/10.1145/contrib-99660690308
https://dl.acm.org/doi/10.1145/institution-60031004
https://dl.acm.org/doi/10.1145/contrib-99661213299
https://dl.acm.org/doi/10.1145/institution-60031004
https://dl.acm.org/doi/10.1145/contrib-99661761268
https://dl.acm.org/doi/10.1145/institution-60031031
https://dl.acm.org/doi/10.1145/contrib-99659077148
https://dl.acm.org/doi/10.1145/institution-60031031
https://dl.acm.org/doi/10.1145/contrib-81474646979
https://dl.acm.org/doi/10.1145/institution-60031004
https://dl.acm.org/doi/10.1145/3680207.3723482
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60031004
https://dl.acm.org/doi/10.1145/institution-60031031
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3680207.3723482&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/mobicom
https://dl.acm.org/conference/mobicom
https://dl.acm.org/conference/mobicom
https://dl.acm.org/sig/sigmobile
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3680207.3723482&domain=pdf&date_stamp=2025-11-21

WinSpy: Cross-window Side-channel Attacks on
Android’s Multi-window Mode

Zeng Li!, Chuan Yan?, Liuhuo Wan?, Hui Zhuang3,

Pengfei Hu®, Guangdong Bai?, Yiran Shen'*
School of Software, Shandong University, China
2School of Information Technology and Electrical Engineering, The University of Queensland, Australia
3School of Computer Science and Technology, Shandong University, China

Abstract

With the development of the Android system and increas-
ing screen size, the use of multi-window mode has become
prevalent among users. However, the security and privacy
implications associated with this mode have not been thor-
oughly investigated. This paper uncovers severe and unique
security vulnerabilities in Android’s multi-window mode,
revealing several high-risk side-channels that facilitate di-
verse cross-window attacks, leading to significant breaches
of user privacy. In detail, our research introduces WinSpy,
a framework leveraging a newly discovered resource con-
tention side-channel in multi-window mode to fingerprint
app launches, web pages, and in-app activities, all without
violating Android’s permission framework. Our extensive
evaluations demonstrate that WinSpy achieves high accu-
racy (from 70 to 80% detecting website and app launches to
over 97% recognizing critical in-app activities). Additionally,
we reveal that due to Android’s lenient permission man-
agement for this mode, window apps can also use Inertial
Measurement Unit sensors to launch attacks, such as infer-
ring the user’s touch positions outside the window with high
precision. Furthermore, we propose systematic mitigations
against these vulnerabilities.

CCS Concepts

« Security and privacy — Operating systems security;
Domain-specific security and privacy architectures.

“Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ACM MobiCom °25, November 3-7, 2025, Hong Kong, Hong Kong

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1129-9/25/11
https://doi.org/10.1145/3680207.3723482

407

Keywords

Android security and privacy, Multi-window mode, Side-
channel attack

ACM Reference Format:

Zeng Li!, Chuan Yan?, Livhuo Wan?, Hui Zhuang3,, Pengfei Hu?,
Guangdong Bai?, Yiran Shen'. 2025. WinSpy: Cross-window Side-
channel Attacks on Android’s Multi-window Mode. In The 31st
Annual International Conference on Mobile Computing and Network-
ing (ACM MobiCom °25), November 3—7, 2025, Hong Kong, Hong
Kong. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3680207.3723482

1 Introduction

Android has become one of the most popular mobile operat-
ing systems globally, commanding a market share of 70% in
smartphones [8]. This success is driven by its open ecosys-
tem, high flexibility, and rapid iteration capabilities. The
platform boasts a vibrant ecosystem with over 2.6 million
third-party apps, significantly enhancing productivity and
enriching users’ daily experiences [15]. When users down-
load and start these apps, Android schedules threads based
on whether each app is in the foreground or background,
ensuring that the foreground app remains responsive and
interactive while optimizing system resource utilization [26—
28]. However, as user scenarios become more complex and
interactions diversify, the need for multitasking and simulta-
neous access to information has grown, making it insufficient
to display a single program on a single screen.

In response to the increasing demand for multitasking
and simultaneous access to information, Android introduced
multi-window mode [12] in version 7. This feature allows
users to run and interact with multiple apps on the same
screen concurrently, significantly enhancing multitasking
capabilities on Android devices. This model enhances con-
venience and efficiency when browsing information and
performing cross-app operations.

To further facilitate flexible app switching in the multi-
window mode, Android introduced a multi-resume mecha-
nism [7] in version 10. This mechanism maintains all the
multi-window apps in the resumed state, their most active
lifecycle phase, with similar priorities and permissions as

https://doi.org/10.1145/3680207.3723482
https://doi.org/10.1145/3680207.3723482
https://doi.org/10.1145/3680207.3723482

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

/ O ~N
e User
Q) Victim app (& vocier
Mﬂ N hared semamn readings —
resource “' — —
% | iy | L (BBEE
\m Privacy leakage

Figure 1: The adversary app of WinSpy launches cross-
window side-channel attacks on the victim app via
resource contention and shared sensor readings to in-
fer the private information of the users.

foreground apps, allowing seamless switching with low de-
lays.

Using Android smartphones in the multi-window mode
has become a common daily scenario [19, 44]. For example,
a user can watch Netflix and send messages on WhatsApp
at the same time. Major Android manufacturers like Sam-
sung, Motorola, and Google Pixel are developing devices
with larger screens, including tablets and foldable phones,
which are ideal for multi-window mode and greatly improve
multitasking [24, 31, 32]. Consequently, supporting the multi-
window mode for more efficient and convenient multitasking
has become a key optimization objective when customizing
operating systems and a major selling point in marketing
these devices.

While multi-window mode offers users the convenience
of multitasking, it also raises significant concerns regard-
ing data exfiltration and information flow between concur-
rently running apps. On the one hand, malicious apps can
exploit the Android GUI design, by generating fake or trans-
parent floating windows to trick users into inputting sensi-
tive content or passwords while interacting with a targeted
app [5, 34, 54, 60]. A line of research has been dedicated to the
detection of such problematic windows [20, 37, 40, 49]. On
the other hand, a malicious app running in the background
could potentially steal private information from foreground
apps through side-channels that arise from fluctuations in re-
source consumption during user interactions [47, 51, 62, 63].
Android has mitigated these issues over time by tightening
permissions management for background apps. However, no
existing research has investigated the potential of app-level
side-channel attacks enabled by the multi-window mode,
leaving the crucial question of whether side-channel attacks
in multi-window mode can accurately steal private data unre-
solved.

Our work. In this work, we propose WinSpy, a cross-window
side-channel attack approach that leverages the multi-window
mode to execute app-level attacks. To the best of our knowl-
edge, WinSpyis the first comprehensive and systematic study

408

Zeng Li, Chuan Yan, Liuhuo Wan, Hui Zhuang, et al.

on this topic. It explores the unique design of multi-window
mode in the app priority management. In particular, app
priorities in multi-window mode are set to be almost equal,
rather than employing a more sophisticated adaptive pri-
ority management mechanism. This simplification makes
multi-window apps behave like foreground apps, granting
them high priorities to access side-channels with lenient
permission management.

WinSpy explores two types of side-channels arising from
this, as shown in Figure 1. First, in resource allocation for
multi-window mode, each app competes for various runtime
resources based on its needs. The system’s lack of sophis-
ticated security management in this contention leads to a
neglect of safety in scheduling, allowing different contention
patterns to reflect the underlying app behaviors. These pat-
terns can be exploited to launch cross-app side-channel at-
tacks. We are the first to discover that this side-channel is
effective in launching cross-window attacks in the multi-
window scenario at the app layer, while apps running in
background mode cannot effectively launch such attacks due
to their lower priority in resource contention. Second, in
multi-window mode, all apps are granted permission levels
almost similar to those in foreground mode. By exploiting
this relaxation in permission management, an adversary app
has full access to the embedded sensors and shares the same
sensor readings with the victim app. These sensor readings
can be utilized as side-channels to launch attacks, such as in-
ferring tap positions [17, 56], classifying user’s interactions
with other apps [42, 45, 50] and even reconstructing sound
played by other apps [18, 35]. However, due to Android’s
restrictions on background apps accessing sensors (unless
permitted by the user), these attack threats are largely miti-
gated. Nonetheless, we find that window apps can still access
sensors without permitted, thereby posing serious security
issues.

According to the above insights about multi-window mode,
we first construct the Resource Contention Incursion
leveraging the problematic simplified resource allocation
management. This technique infers various behaviors of the
victim app by analyzing the characteristics of resource con-
tention over CPU, memory, and disk usage. Specific attacks
discussed in this paper include App Launch Fingerprinting to
identify the start of an app, Website Launch Fingerprinting to
recognize the website being browsed, and In-app Activities
Fingerprinting to detect sensitive user activities within an app
(Section 6). Additionally, based on issues arising from shared
sensor readings from embedded sensors(e.g., accelerometer,
and gyroscope), we devise Motion Sensor Snooping, where
the adversary app reads sensor data while the user interacts
with the victim app to identify actual user interactions with
other apps (Section 7).

WinSpy: Cross-window Side-channel Attacks on Android’s Multi-window Mode

Through extensive evaluations on large-scale datasets col-
lected from 21 popular apps and 21 mainstream websites on
multiple Android devices, WinSpy achieves the recognition
accuracy of 70.1% and 80.3%, on apps and website launching
fingerprinting respectively. For in-app activities, the accu-
racy reaches over 97.6% for detecting critical activities. In
the motion sensor snooping scenario, WinSpy accurately
localizes the user’s touch position, thereby inferring user
inputs on a numeric keypad. Our study reveals significant
security and privacy vulnerabilities in the current Android
multi-window mode. These findings highlight the urgent
need for enhanced security measures to protect user data
across multiple concurrently running apps.

Contributions. The main contributions of this work are
as follows.

e Understanding the resource allocation mecha-
nism in Android’s multi-window mode and the
security exposures it presents. Contrary to the tra-
ditional foreground-background mode, we outline the
differences in resource allocation and identify typi-
cal use scenarios in the current multi-window mode,
highlighting three related security exposures.
Constructing a comprehensive side-channel at-
tack model for multi-window mode. Based on the
attack model, we design WinSpy, a cross-window side-
channel attack framework that exploits the security
vulnerabilities of multi-window mode. Through exten-
sive evaluations on various specific attack tasks, in-
cluding fingerprinting of app launch, website launch,
and in-app activities, and sensor-based tap localization
inference, we demonstrate the efficacy of WinSpy.
Revealing security vulnerabilities in the Android
resource scheduling in multi-window mode. Our
findings highlight the vulnerability of multi-window
mode to side-channel attacks, revealing the current
inefficiencies and insecurity in Android resource sched-
uling. Simultaneously, we provide possible mitigations
to maintain a secure and robust Android ecosystem.
Ethics and Disclosure. We conducted all experiments within
a private workspace, and all the apps tested were installed
and tested on controlled devices. All discovered attacks have
been ethically disclosed to Google.

Availability. The source code of WinSpy and additional
evaluation results mentioned in the paper can be accessed at
an open source repository [2].

2 Related Work

Privacy issue of Multi-window mode. Several studies
have investigated the security implications of multi-window
mode on mobile devices. AlJarrah et al. [5] investigate how
floating windows can overlay applications and mislead users

409

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

into providing sensitive information, potentially leading to
unintended data disclosure. Building on this, Wang et al. [54]
demonstrate that such overlays can also hijack biometric in-
puts like fingerprints. Ying et al. [60] examine the potential
for Ul spoofing attacks, where the generation of numerous
windows can lead to a Denial of Service (DoS) attack on the
phone, ultimately causing it to crash. To address these secu-
rity issues, Ren et al. [49] developed WindowGuard, a system
that evaluates the properties and activities of windows on
mobile devices. It aims to block unauthorized overlays and
prevent interaction hijacking by regulating the interactions
among different window layers. In contrast to these stud-
ies which focus primarily on fraud in the UI and flaws in
interactions, our work delves deeper into the underlying
mechanisms of multi-window operation which causes pri-
vacy leakage under side-channel attacks.

Side-channel attacks by analyzing system statistics.
There are existing studies on side-channel attacks utilizing
the runtime statistics provided by Android APIs. However,
due to restrictions imposed by Android, these APIs are no
longer feasible. For example, Dipta et al. [30] exploited an
Android 8.0 vulnerability, allowing background apps to infer
user activities in foreground apps by analyzing CPU fre-
quency patterns. Other studies used CPU statistics for mal-
ware detection [25, 43, 46, 63], such as analyzing background
apps’ CPU and memory usage to identify malicious software.
There is also some work that utilizes timing side-channel,
for example, Palfinger et al. [47] found that the execution
times of function calls could indicate system status, that is,
by analyzing the execution delays from file access functions,
one could deduce the presence of specific files. Similar work
on PC platforms involved behavior fingerprinting based on
indirect information [4, 55]. For example, on Intel platforms,
attackers used Port Contention on CPU functional units and
inferred contending processes’ behaviors from delay pat-
terns. Additionally, studies [22, 23, 36, 51, 58, 59, 62, 64, 65]
leveraged software architecture information, APIs, system
open data, and hardware features to provide time-series data
for conducting fingerprinting attacks on user behavior. How-
ever, most of the existing attacks rely on specific system APIs
(often disabled in newer system versions) or are designed
for non-Android platforms unsuitable for direct adaptation.
For instance, CPU port contention-based attacks [4] depend
on underlying hardware characteristics, which are obscured
in Android applications through heavily encapsulated APIs
and virtualized runtime environments. In contrast, our pro-
posed contention-based side-channel attack solely relies on
inter-app contention caused by the scheduling mechanism
under Android’s multi-window mode.

Side-channel attacks based on motion sensors. Studies
on side-channel for motion sensors has a long history. As
early as 2012, numerous studies focused on side-channel

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

attacks involving motion sensors such as accelerometers
on mobile phones. Some works [17, 56] classified the 10
numerical keys on a digital keypad. Other works [42, 45]
implemented screen segmentation into multiple rows and
columns, classifying user tap regions, with the latter also
testing classification on a 26-letter virtual keyboard. Later,
Singh et al.[50] classified genders based on subtle differences
in motion habits when men and women used their phones.
Matyunin et al.[41] found that different operational states
of a mobile phone produced distinct electromagnetic sig-
nals that affected the magnetometer, which were used to
classify the apps and web pages being used. Other works
utilized the accelerometer to implement practical function-
alities. Some studies [38, 48] used the accelerometer and
gyroscope to recognize 3D motion trajectories of the phone,
facilitating gesture recognition. Several works [38, 39] uti-
lized a wristwatch’s motion sensor to classify the positions
of keys pressed on a physical QWERTY keyboard. With the
advancement of deep learning technologies, some studies
discovered that accelerometers were sensitive enough to cap-
ture vibration characteristics when the phone played sound
out loud [18, 35]. The corresponding techniques above can
be utilized to undertake side-channel attacks on Android’s
multi-window mode by exploiting the sensor readings of the
smartphones.

3 Introduction to Multi-window Mode

Multi-window mode, initially an experimental feature in
Android 6.0, was formally implemented in Android 7.0 [9].
It has been refined in later versions and encompasses three
main scenarios (as depicted in Figure 2):

o Floating-window (left): This mode enables users to
interact with apps in movable, resizable windows that
float above other applications.

e Picture-in-picture (middle): introduced in Android
8.0, this mode is typically used for video playback. It
can also be employed for regular interactions without
video content.

o Split-screen (right): This mode divides the screen
into two parts, either horizontally or vertically.
Process scheduling and resource allocation in multi-
window mode. In the Android system, each app operates
as a separate Linux process with its own sandbox for secu-
rity and resource isolation [13]. Android employs the Linux
scheduler to manage multiple apps running simultaneously.
This includes applying fair scheduling for equitable allo-
cation of CPU, memory, and so on, and preemptive rules
enabling processes to autonomously secure necessary re-
sources [14]. Furthermore, Android’s scheduling is tailored
to phone characteristics, prioritizing processes based on fac-
tors such as foreground-background status, multi-window

410

Zeng Li, Chuan Yan, Liuhuo Wan, Hui Zhuang, et al.

status, interactivity, visibility, and so on, ensuring that higher-
priority processes receive more resources during contention.

Figure 2: Three common multi-window mode scenar-
ios: Left, a shopping website occupies the full screen
with a calculator in a floating-window. Middle, an in-
stant messaging app is in full screen while a video app
is in picture-in-picture mode. Right, a live streaming
app and a messaging app run in split-screen mode.

4 Exposure Definition

Unlike traditional foreground-background mode, multi-window
mode focuses more on enhancing multitasking capabilities,
which consequently introduces unique privacy exposures.
We summarize three potential exposures of it according to
its unique management mechanism on priorities, permis-
sions, and processes to guide the design of subsequent attack
framework.

Exposure 1: The Multi-Resume Mechanism. In early
versions of Android, only one app could actively run in the
foreground. Switching apps would pause or stop the initial
one, triggering its onPause () or onStop() functions and rel-
egating it to background operations like services. Android 10
revolutionized this by introducing the Multi-Resume Mech-
anism [7], enabling multiple apps to remain active and run
concurrently in multi-window mode, thus boosting multi-
tasking efficiency.

Since mobile apps typically require substantial resources
like CPU during launching and performing specific func-
tionalities, we find there is a contention for resources when
multiple apps are active under the multi-resume mechanism.
For example, when app @ monopolizes limited resources, it
forces app f to contend for them. In this scenario, o can ob-
serve consistent changes in system resource usage every time
B performs a specific task, allowing « to infer ’s operational
behaviors based on their resource contention fingerprints.
Exposure 2: Continuous Monitoring. Table 1, referenced

n [33], details the system’s likelihood of terminating pro-
cesses based on their activity states. Apps in the Resumed
state, typically active in the foreground or multi-window
modes, are least likely to be killed due to higher priority.

WinSpy: Cross-window Side-channel Attacks on Android’s Multi-window Mode

Conversely, background apps in the Stopped state face a
higher killing likelihood as they have lower priority.

Table 1: Likelihood of process being killed based on
State.

f;;.kl(eilllllils(g)d Activity state Process state
Lowest Resumed Foreground, Multi-window
Low Started/Paused Visible (no focus)
Higher Stopped Background (invisible)
Highest Destroyed Empty

Specifically, after a user finishes using an app and leaves it

in the background, subsequently opening many other apps
will progressively lower the priority of the background apps.
Eventually, the system will freeze and terminate these back-
ground apps. In contrast, multi-window mode gives apps run-
ning in this state nearly the same priority as foreground apps,
which remains unchanged even as more apps are launched.
This management not only lowers the chances of an app
being terminated but also opens doors for malicious moni-
toring between apps. For instance, a compromised window
app can perform extensive monitoring of other window apps
without system termination, a capability that background-
running malicious apps cannot achieve. In our subsequent
experiments, we find the adversary app running in multi-
window mode consistently remains active, which provides a
significant advantage for the adversary.
Exposure 3: Shared Sensors Readings. Recent off-the-
shelf Android phones are equipped with various low-cost
sensors to support multiple apps and services, such as In-
ertial Measurement Units (IMUs), proximity sensors, and
lighting sensors. Foreground apps can access these sensors
without user permission and at the maximum sampling rates
(Maximum rate reading permission is a normal permission
that doesn’t require a user grant [6]). To prevent potential
misuse and protect user data, starting from Android 9, back-
ground apps are prohibited from accessing these sensors
at even the minimum rate, unless the user grants explicit
permission [29].

However, this restriction does not apply to multi-window
mode, where apps can always access these sensors at maxi-
mum rate, meaning the readings of these sensors are shared
across apps. For example, the accelerometer is often used to
monitor user activities, providing time-series data across the
three axes at typically 300-500Hz. An app can use the shared
IMU sensor readings to infer tap positions [39, 42, 56]. We
adapt these attacks for window apps, allowing them to infer
tap positions outside of the window.

411

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

5 Attack Overview
5.1 Attack Scenario

In our usage scenario, a user operates two apps concurrently
in multi-window mode on an Android device for work or
entertainment. For instance, one app may be streaming video
content while the other is used for social networking. In
multi-window mode, both apps run in parallel and can access
the full system resources and sensors without the user’s
explicit permission.

However, one of these apps, referred to as the adversary
app, has been compromised and is under the control of re-
mote hackers. The adversary app is designed to conduct
side-channel attacks on the other app, the victim. Specifi-
cally, by exploiting the multi-resume mechanism (Exposure
1) in multi-window mode, the adversary app can identify
the victim app and monitor its in-app activities. This capa-
bility allows the adversary to capture a wide range of user
activities, such as detecting app launches, monitoring web
browsing, and observing transactional interactions within a
banking app. Considering the high operation priority (Expo-
sure 2), the adversary app in multi-window mode is highly
unlikely to be terminated by the system. This ensures that
the adversary can continuously monitor the activities of the
other app for an extended period. Finally, the shared sen-
sor readings (Exposure 3) allow the adversary app to access
IMU sensors without the user’s permission. These readings
can be analyzed to deduce sensitive user interactions with
the victim app. For example, by accessing IMU sensor read-
ings, the adversary can infer typing inputs within the victim
[39, 42, 56].

5.2 Adversarial Capabilities and Attacks
Classification

Based on the definition of exposures introduced by Android’s
multi-window mode discussed in Section 4, we consider two
major categories of side-channel attacks as the capabilities
of WinSpy:

Resource Contention Incursion. Based on exposures 1
and 2 (The Multi-Resume Mechanism, Continuous Monitor-
ing), the adversary app runs concurrently with the victim
app, contending for limited resources like CPU at nearly
equal priority levels. As the resource contention between the
two apps significantly affects their own retained resources,
the adversary can identify the characteristics of the victim
by tracking changes in its own resource usage. The specific
attacks derived from this point:

e App Launch Fingerprinting (Section 6.3). By iden-
tifying and monitoring the resource consumption char-
acteristics during the launch of the victim app, adver-
sary can determine its identity.

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

User Activities

Zeng Li, Chuan Yan, Liuhuo Wan, Hui Zhuang, et al.

Resource contention side-channel Hacker

000 f=—] » Attacks based on resource contention H m H
000 SN - H
gg -\ TII]

: = = Resource

Open apps Visit websites Transaction
9 g ~. &
User —

User Activities Victim app

>

Tap screen Sound output,

Attacks based on motion sensors

[e] (o]
(®)
Contention

o)
}

=i
- l'

Adversary app

t1
Multi-window Mode

Co
Floating window Split screen Picture in picture

A4

Sensors sharing side-channel

Accelerometer Gyroscope Magnetometer

Figure 3: The pipeline of WinSpy for conducting a number of different side-channel attacks in multi-window mode.

e Website Launch Fingerprinting (Section 6.4). When
the victim app is a web browser, the adversary app can
identify the webpage the user is browsing.

e In-app Activities Fingerprinting (Section 6.5). User
activities within victim can cause observable changes,
allowing the identification of sensitive activities.

Motion Sensor Snooping. Based on exposures 2 and 3 (Con-
tinuous Monitoring, Shared Sensors Readings), the attacker
can read IMUs data at the maximum frequencies without re-
quiring explicit user permissions, enabling them to infer the
user’s interactions with victim apps, termed as IMU-based
Tap location Inference (Section 7.2). This attack relies on
the finding that different screen tap locations generate dis-
tinct patterns in IMUs time-series, which can be analyzed to
deduce where a user has touched on the screen, thus infer-
ring the interactions between the user and the victim app,
such as the input content.

6 Design and Evaluation on Attacks based
on Resource Contention

In this section, we first introduce the design of the adversary
app for resource contention incursions. We then evaluate and
discuss the three specific types of attacks conducted by the
adversary app, i.e., the app launch fingerprinting, website
launch fingerprinting and in-app activities fingerprinting
attacks.

6.1 Design of Adversary App

To introduce the contention between the adversary app and
the victim app over the limited resource (e.g., CPU), we have
configured the adversary app with multiple CPU resource-
consuming threads. Additionally, the adversary also main-
tains a statistics thread that monitors the statistics related
to the performance of the CPU resource-consuming threads,

412

i.e., the total number of tasks accomplished. The detailed
designs are as follows:

e CPU Threads: the CPU threads run intensive inte-
ger and floating-point computation tasks to occupy
the computational resources of the mobile CPUs, con-
tinuously performing basic mathematical calculations
such as In(), exp(), sin(), etc.

o Statistics Thread: the statistics thread is responsible
for counting the number of tasks completed by each
CPU resource-consuming thread within a specific pe-
riod, which is 10ms in this paper. The total number of
tasks completed by all of the CPU threads is then saved
along with the system time, forming a contention-tuple
of two integers: < T;, Ncpy > where, T; is the times-
tamp, and Ncpy represent the total number of tasks
completed by the CPU.

It is worth noting that we also considered contention over
other resources, such as memory and disk usage. However,
our evaluation reveals that a CPU-only setting achieves the
best performance. This is because CPU threads handle basic
computations, allowing a significant number of CPU tasks
to be completed, which provides a wide value range. This in-
creased task completion potential enables the observation of
fine-grained characteristics during competition. Additionally,
we found that the number of CPU threads in the adversary
app plays a crucial role. Excessive threads can overload sys-
tem resources and destabilize the app, while too few threads
fail to create effective resource contention. An optimal num-
ber of threads is essential for maintaining stability and effec-
tive monitoring. Our evaluation shows that 10 CPU threads
work well for app launch fingerprinting attacks, while 5 CPU
threads are effective for website launch and in-app activity
fingerprinting attacks. The detailed results for the type and
number of contention threads are omitted due to page limits
but can be found in the open-source repository.

WinSpy: Cross-window Side-channel Attacks on Android’s Multi-window Mode

6.2 Hardware and Evaluation Setup

The experiments are primarily conducted on the Honor Magic
V2, a foldable smartphone running Android 14 (the latest
Android version as of submission). This device is particu-
larly convenient for use in multi-window mode, especially in
split-screen mode due to its large screen. We ensure that the
battery level remains above 50% to maintain stable device
performance. To verify the generalizability of our experi-
ments, we also employed additional devices including the
P30 (released in 2019, Android 10), and Xiaomi Pad 6 (a tablet
released in 2019, Android 13).

To evaluate each specific attack, we employ a simple one-
dimensional Convolutional Neural Network (1D-CNN) as
the classifier. We have tested other classifiers like LSTM and
SVM as well, yet we ultimately selected the 1D CNN for its
robustness. This network combinates seven convolutional
layers for extracting features and four deconvolution layers
for aggregating them, followed by two fully-connected layers
and a softmax classifier. 1. We apply a common 80%-20% split
for training and testing, averaging multiple runs for our final
results.

6.3 App Launch Fingerprinting

In this section, we conduct experiments to evaluate the accu-
racy of WinSpyin inferring the start of different apps through
app launch fingerprinting.

6.3.1 Experimental Procedure. We select the top 21 pop-
ular apps from APKPure’s [1] hotlist as the candidate victim
apps including Telegram, Instagram, Pixiv, Tinder, Gmail,
Google Translator, Facebook, among others. These 21 apps
comprehensively cover the various primary activities and
functions users engage in on mobile devices, including so-
cial networks, messaging, content streaming, and more. This
broader selection allows us to evaluate the robustness and
generalizability of the app launch fingerprinting attacks
across a diverse set of applications (the complete list is shown
in Figure 5).

The experimental procedure is as follows: first, we open
the adversary app in a floating window, which occupies
10 CPU resource-consuming threads to introduce intensive
contention with one of the victim candidates. Then, we ran-
domly tap to launch one of the 21 victim apps. After waiting
for 5 seconds, we close the victim app. During the launch
of each candidate victim app, the statistics thread of the
adversary app monitors the contention and stores approxi-
mately 5 seconds of time-series data of the contention-tuple
< T;, Ncpu >. Since the statistics thread has a sampling pe-
riod of 10ms, 500 tuples are recorded with each launch. For
each victim app, we collect 200 launch samples.

The detailed design of the network is available from GitHub [2].

413

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

6.3.2 Time-Series Analysis of App Launches. The iden-
tification of different victim app launches is based on distinct
and reproducible time-series characteristics of completed
tasks every 10ms during contention. For example, Figure 4(a)
shows the time series for the 50th, 100th, and 150th Facebook
launch attempts, illustrating that, despite these being sepa-
rate launch attempts, these attempts have very consistent
time-series. In contrast, Figure 4(b) presents the average time-
series of the number of completed CPU tasks for three dif-
ferent popular apps, namely YouTube, Google Translate, and
Instagram. They show significant distinctive characteristics,
making them identifiable through app launch fingerprinting
attacks.

Number of completed tasks for each 10ms

50th Launch
100th Launch
150th Launch

25000
20000

15000
10000

5000 L[,

Time (s)

(a) Facebook launches

Number of completed tasks for each 10ms

—— Google Translate
—— Youtube
Instagram

10000

9000

8000

7000

6000

5000 Time (5)

05 0 1 2 3 4

(b) Different apps launches

Figure 4: The characteristics of time-series of num-
ber of completed tasks in contention; (a) shows three
launch attempts on Facebook and (b) shows launch
attempts from three popular apps.

6.3.3 Classification Accuracy. We collect 200 launches
per victim app in multi-window mode. To verify whether
our newly discovered resource contention side-channel is
effective in background apps, we also collect data of the same
scale in foreground-background mode, i.e., the adversary
runs in background and the victim runs in foreground.

ACM MobiCom ’25, November 3-7, 2025, Hong Kong, Hong Kong

Accuracy (%)

00

W Background
80{ HEE WinSpy
60
40
20
0 ¥ ¥ IR A T AN I T HF LSNP

ST TS TR ETFEIT I FTESFEES

FIFEIVEFS TSI LSFTLI LI TFTSF S S
FENE TS TS °°
&4 R g*é’.ws“’@e‘o?‘

&
SEF
<]

Figure 5: The comparison between the accuracy of
WinSpy and the foreground-background mode for app
launch fingerprinting attacks.

The classification accuracy for each of the 21 apps is pre-
sented in Figure 5. We can observe that WinSpy in multi-
window mode achieves an average accuracy of 70.5%, while
the accuracy of the adversary app in background mode is
only 20.1%. Moreover, WinSpy is consistently and signifi-
cantly more accurate in multi-window mode compared to
adversary in foreground-background mode.

6.4 Website Launch Fingerprinting

In this section, we will conduct experiments and evaluations
on the accuracy of WinSpy in website launch fingerprinting
attacks.

We choose 21 popular websites from the similarweb’s [3]
hotlist, which provides a list of global website rankings based
on the traffic and visitation data of various websites, the
complete list is shown in Figure 6.

Accuracy (%)

100

W Background
N WinSpy,

80

60

40

Figure 6: The comparison between the accuracy of Win-
Spy and the foreground-background mode for website
launch fingerprinting.

414

Zeng Li, Chuan Yan, Liuhuo Wan, Hui Zhuang, et al.

The accuracy of website launch fingerprinting attacks of
WinSpy and its contending method, i.e., adversary in back-
ground, on 21 different websites are shown in Figure 6. From
the evaluation results, we can clearly observe the large ac-
curacy gap between our proposed method and its counter-
part for 21 websites. WinSpy achieves an average accuracy
on website launch fingerprinting attacks about 80.3% while
when the adversary runs in background, its average attack
accuracy is only about 22.7%.

In the evaluations on the accuracy of website launch at-
tacks, we collect website launch data samples from the ad-
versary app when the victim app, Microsoft Edge, launches
different websites. To demonstrate the superior performance
of WinSpy in website launch fingerprinting attacks, the two
apps run in either multi-window or foreground-background
modes during data collection experiments. For each mode,
we collect 200 data samples for each website.

Number of completed tasks for each 10ms

—— 50th Launch
— 100th Launch
—— 150th Launch

40000

30000

20000

10000

Time (s)

05 0 1 2 3 4

(a) amazon.com launches

Number of completed tasks for each 10ms
18000

y et e

16000

14000

12000 v —— quora.com

i — ebay.com
{ ~——— maps.google.com
Time (s)
05 0 1 2 3 4

10000

(b) Different websites launches

Figure 7: The characteristics of time-series of num-
ber of completed tasks in contention; (a) shows three
launch attempts on amazon.com and (b) shows launch
attempts from three popular websites.

To provide an intuitive explanation of why WinSpyachieves
promising accuracy in website fingerprinting attacks, Fig-
ure 7 presents examples of time-series from monitoring the
resources contention through WinSpy to show the charac-
teristics caused by launching different websites in the victim

WinSpy: Cross-window Side-channel Attacks on Android’s Multi-window Mode

app. By comparing the time-series from the 50th, 100th, and
150th launch attempts on Amazon.com (Figure 7(a)), we can
observe significant consistency among these launch attempts,
indicating that the characteristics of launching the same
website are reproducible. On the contrary, the average time-
series generated from launching three different websites,
i.e., quora.com, ebay.com, and maps.google.com, in Figure 7(b)
demonstrate significantly distinctive characteristics.

6.5 In-app Activities Fingerprinting

Finally, we conduct extensive experiments and evaluations
to investigate the potential of side-channel attacks based on
resource contention for inferring more fine-grained and sen-
sitive in-app activities, result in significant privacy leakage
for some specific apps.

6.5.1 Apps and In-app Activities Selection. For in-app
activities fingerprinting attacks, we choose WhatsApp, a
widely-used instant messaging and calling app with over
2 billion monthly active users [53], and Alipay, an online
payment platform with over 650 million monthly active
users [52], as two representative apps. These apps involve
sensitive interactions with users and have access to private
data. Therefore, successful attacks on the in-app activities of
these apps pose significant privacy and financial risks.

The Wall Street Jour.

WwsJ

e Mark Zuckerberg.

\.

Figure 8: The critical and non-critical in-app activities
in WhatsApp (left) and Alipay (right) apps.

Specifically, for WhatsApp, as shown in the region within
the red rectangle on the leftmost side of Figure 8, the attacks
focus on three critical and frequent in-app activities: first,
Tap Keyboard is the user taps the input box to bring up the
on-screen keyboard for sending text messages. Second, Tap
Microphone is the user taps the microphone button to start
recording a voice message. Third, Tap Camera is the user
taps the camera button to trigger the camera or access the
photo library for sharing a photo.

Alongside these critical activities, multiple non-critical
actions are also included in the data collection to form a

415

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

comprehensive dataset for evaluating the accuracy of identi-
fying one of the critical in-app activities. As shown in the
regions of the green rectangles in the left side of Figure 8,
these non-critical actions include navigating between dif-
ferent tabs (the green rectangle at the bottom) and viewing
channels content (the green rectangle at the top).

For Alipay, the considered critical in-app activities are
shown within the red rectangle in the right side of Figure 8.
These activities are financial-related actions, specifically
recharging and withdrawing funds: first, Tap Recharge
is the user is going to add some funds from his/her bank
account to his/her Alipay account by tapping the recharge
button. Second, Tap Withdraw is the user is going to with-
draw money from his/her Alipay account to his/her bank
account.

The above in-app activities are critical as they are often
followed by password input, which can be inferred from
the IMU-based tap location attacks launched by WinSpy (de-
scribed in the next section). Similar to the case for WhatsApp,
a number of non-critical in-app activities are also included
in the data collection experiment, such as checking the ac-
count balance, viewing transaction details, etc., by clicking
the corresponding buttons within the region framed by the
green rectangle in the rightmost part of Figure 8.

6.5.2 Evaluation Results. To evaluate the accuracy of
the in-app activities fingerprinting attacks, we collect an
in-app activities dataset when the pair of adversary and vic-
tim apps run in either multi-window mode (i.e., WinSpy)
or foreground-background mode. For each critical in-app
activity, 1,000 tapping actions are performed. For the non-
critical activities, a total of 5,000 tapping actions are collected.
During data collection, the adversary app, either running in
multi-window mode or background mode, records the time
series of the resource contention.

Table 2: Accuracy of in-app activities fingerprinting
attacks on WhatsApp and Alipay launched by WinSpy
and adversary runs in background.

Activities in WhatApp WinSpy Background
Tap Keyboard 97.4% 71.9%
Tap Microphone 98.2% 73.4%
Tap Camera 96.6% 68.6%
Average 97.4% 71.3%
Activities in Alipay WinSpy Background
Tap Withdraw 97.2% 78.2%
Tap Recharge 98.1% 77.3%
Average 97.7% 77.8%

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

Table 2 presents the evaluation results on inferring the
critical in-app activities of WhatsApp and Alipay via either
WinSpy or the adversary app running in background mode.
By comparing the accuracy of different methods, we ob-
serve that WinSpy achieves high accuracy in inferring all the
critical activities. This indicates that the newly discovered
resource contention side-channel is highly effective, posing
significant risks of privacy leakage concerning users’ private
and sensitive interactions with victim apps in multi-window
mode and even in foreground-background mode.

6.6 Extended Discussion

6.6.1 Generalization. The evaluations above primarily fo-
cus on a large-scale dataset collected from a foldable smart-
phone. To demonstrate the generalization of WinSpy in side-
channel attacks via resource contention, we collected an-
other dataset using three Android devices: the Honor Magic
V2 (foldable), Huawei P30, and a Xiaomi Pad 6 tablet. Dur-
ing data collection, we considered all three multi-window
modes—floating-window, split-screen, and picture-in-picture
in addition to a background mode. This dataset centers
on website launch fingerprinting attacks targeting seven
popular and representative websites from Similarweb’s [3]
hotlist, including google.com, instagram.com, facebook.com,
twitter.com, baidu.com, youtube.com, and netflix.com. For the
adversary app running on the three devices in four different
modes, we collected 200 samples for each website.

Table 3: Website launch fingerprinting attacks on dif-
ferent smartphones and tablet in different modes.

Device Floating | Split PiP Background
Magic V2 94.8% 95.5% 90.3% 42.3%
P30 92.7% 91.2% 90.1% 31.1%
Xiaomi Pad 6 89.9% 87.4% 88.0% 22.3%

As the evaluation results shown in Table 3, WinSpy con-
sistently achieves high accuracies on different devices and
in different multi-window modes. The accuracy is at least
over 88%. Moreover, comparing the results in different modes
reveals significant accuracy gaps between WinSpy and the
adversary running in the background, with differences reach-
ing up to 60%.

6.6.2 Multi-window Mode v.s. Background Mode for
Resource Contention. The evaluations in this whole sec-
tion demonstrate that WinSpy consistently achieves high
accuracy in each attack, leveraging our newly discovered
resource contention side-channel in multi-window mode.
However, the performance is poor when this side-channel is
used with background apps. This can be attributed to several
factors:

416

Zeng Li, Chuan Yan, Liuhuo Wan, Hui Zhuang, et al.

First and foremost, multi-window and background modes
differ significantly in their operating mechanisms, result-
ing in varied resource allocations to the adversary app. In
multi-window mode, the adversary app receives sufficient
resources to complete over 20,000 CPU tasks within 10ms.
In contrast, in background mode, it is limited to only 1,000
to 4,000 CPU tasks. Figure 9 presents the time-series of re-
source contention generated by the 100th website launch on
twitter.com in multi-window mode and background mode,
respectively, highlighting the reduced contention in back-
ground mode. This restriction hampers the background app’s
ability to effectively contend with foreground apps, making
it challenging to extract unique and consistent time-series
characteristics from the resource contention side-channel.

Number of completed tasks for each 10ms

60000

100th Launch in Multi-window Mode
50000 —— 100th Launch in Background Mode
40000
30000
20000

10000
0 Time (s)

05 0 1 2 3 4

Figure 9: The 100th launch attempt on twitter in multi-
window mode and background mode.

Second, as discussed earlier, apps in background mode
are assigned significantly lower priority than those in multi-
window mode. Consequently, the stability of the adversary
app in the background cannot be guaranteed, and its pro-
cesses are more likely to be terminated by the system when
resources are insufficient. This instability makes it difficult
to reproduce the characteristics in the time-series.

7 Design and Evaluation on Attacks based
on Shared Sensor Readings

In this section, we investigate side-channel attacks conducted
by WinSpy using shared sensor readings, specifically IMU
time-series, when the adversary and victim apps run con-
currently in multi-window mode. We will first introduce
the design of the corresponding adversary app. Then, we
will conduct experiments and extensive evaluations on IMU-
based tap location inference attack. These evaluations will
demonstrate the accuracy of IMU-based side-channel attacks
in multi-window mode.

WinSpy: Cross-window Side-channel Attacks on Android’s Multi-window Mode

7.1 Design of Adversary App

The IMU-based tap inference attacks aim to localize the tap
location of the user outside the adversary app to infer sensi-
tive information, such as the content input into the victim
app via the touch keyboard. To achieve this goal, the adver-
sary app registers with the system to access IMU sensors
using SENSOR_DELAY_FASTEST [10], capturing data from the
accelerometer and gyroscope. In multi-window mode, this
is considered a normal permission [6], allowing the app to
read IMU data at maximum rates without user consent, while
background apps cannot access IMU data at all without ex-
plicit permission request. The highest sampling rates vary
for different smartphones, for example, 425Hz on the Honor
device and 500Hz on the P30, with each cycle yielding values
from three axes.

7.2 IMU-based Tap Position Inference

7.2.1 Experiment Design and Data Collection. To in-
vestigate the IMU-based tap inference attacks conducted by
WinSpy, we design two series of data collection experiments.
The first experiment captures the IMU time-series data when
the user taps on various locations across the screen, aiming
to assess the overall localization accuracy. The second exper-
iment records the IMU time-series data while the user types
on a numeric keypad, with the goal of classifying the digits
0-9 based on the IMU time-series data induced by each tap.

Figure 10: The experiment settings for IMU-based tap
inference. Left: the tapping localization. Middle: the
digits classification with a keypad at the bottom. Right:
the digits classification with a keypad in the middle.

In the experiments, two Android devices are used: the
Honor Magic V2 and Huawei P30. The adversary app runs
as a floating window in multi-window mode alongside the
victim app. For the tap localization data collection, a blue
dot appears randomly on the screen for three seconds to
guide the user to press on it, as shown in the leftmost part of
Figure 10. This ensures that the ground truth locations are
recorded along with the corresponding IMU time-series data
captured by the adversary, supporting subsequent evalua-
tions. For the digits classification data collection, we consider
two types of numeric keypad layouts, as shown in the middle

417

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

and right parts of Figure 10: the numeric keypad located at
the bottom or in the middle of the screen. During data col-
lection, a blue dot appears randomly in the middle of a digit
area for three seconds to guide the user to press it, allowing
for convenient acquisition of ground truth for evaluations.

We collected datasets using different devices in various
folding statuses (Magic V2 in both folded and unfolded
modes). In each scenario, approximately 3,000 samples of
time-series data caused by tapping were collected. A 1D-CNN
is adopted as the backbone for tap localization and digit clas-
sification. The difference lies in the usage: the 1D-CNN is
used for regression in tap localization, while it functions as
a classifier for digit classification.

7.2.2 Evaluation Results of Tap Localization. Table 4
presents the pixel mean absolute error (PMAE) of the tap
localization in Euclidean distance (y/dx? + dy?), and its pro-
jection on the horizontal (|dx|) and vertical (|dy|) directions,
marked in bold font. To make the results more intuitive, the
table also includes the width, height, and diagonal length in
pixels for reference. To emphasize the necessity of using the
fast sampling rate (i.e., in SENSOR_DELAY_FASTEST mode),
we also collected a subset of data at a medium sampling rate
(SENSOR_DELAY_GAME) [11], which is approx. 50Hz.

Table 4: PMAE for tap localization.

PMAE (pixels) A:fi%ficejll)z (fri‘fg;f dg) P30
|dx]| 118.7/1060 | 122.2/2156 | 77.1/1080
|dy| 179.3/2376 | 133.3/2344 | 119.7/2340
Vdx? + dy? 233.9/2602 | 197.0/3185 | 154.0/2577
Vdx? + dy? (50hz) | 534.6/2602 | 492.2/3185 | 451.1/2577

From the results, we observe that WinSpy achieves reason-
able tap localization accuracy with the fast sampling rate. For
example, by comparing the PMAEs to the length of each di-
mension, the relative errors (PMAE against the width, height,
or diagonal length) range from 5% to 11.1%. In contrast, the
localization accuracy at the 50Hz sampling rate is signifi-
cantly worse, with errors more than twice as large as those
at the fast sampling rate.

To gain more insights into the accuracy of tap localization
attacks, we present the distributions of PMAE values and
their corresponding spatial distribution on the screen in
Figure 11, using results from the Huawei P30 as an example.
From the left part of the figure, we observe that 80% of the
localization results have PMAEs within 166.03 pixels, which
accounts for 6.4% of the diagonal length or about 1.2 cm
according to the screen size of the P30.

The right part of the figure shows that tap localization
attacks achieve slightly smaller localization error (lower

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

PMAE:s) in the area along the secondary diagonal of the
screen compared to the peripheral areas. This is likely be-
cause when users hold the phone, there is less hand support
in this area, making it more susceptible to acceleration.

dy (pixel) 2340

400 2259 1718 1180 751

2509 221.7 1778 1093

200

3043 2252 1514 1107

2167 1132 964 1144

1899 824 891 1011

—200
119.6 1332

847 1299

Exteriors (20%)
® Interiors (80%)
@ Centroid (:26,7)

i Bounding Circle

we Radius: 166.03
=200 0 200 dx (pixel)

—400

1459 1353 1059 168.5

—600 1424 1083 1405 1364

4 o O
0 ————— 1080

—400

Figure 11: Left: The distribution of relative coordinates
(dx, dy) between predicted and actual positions in P30.
Right: The average relative distance in each area.

Table 5: The accuracy of digits classification via IMU-
based tap inference attacks.

Scenario Layout type Accuracy
Magic V2 (folded) keypad-bottom 40.1%
Magic V2 (folded) keypad-middle 81.7%
Magic V2 (unfolded) keypad-bottom 74.7%
Magic V2 (unfolded) keypad-middle 94.4%
P30 keypad-bottom 80.0%
P30 keypad-middle 91.8%

7.2.3 Evaluation Results of Digits Classification. Ta-
ble 5 presents the accuracy of digit classification via IMU-
based tap inference attacks launched by WinSpy on different
devices, in various folding states (folded or unfolded), and
with different numeric keypad layouts (bottom or middle).
The results indicate that IMU-based tap inference can achieve
relatively high accuracy in certain scenarios. Specifically, tap-
ping on a numeric keypad located in the middle of the screen
poses a higher risk compared to scenarios where the keypad
is at the bottom. The average attack accuracy for keypads in
the middle is 89.3%, while for keypads at the bottom, it is only
64.9%, representing a 24.4% improvement. These deviations
may be caused by the fact that the IMUs are located in the
middle of the screen, making the sensors more sensitive to
tapping in the middle area. Therefore, the location of the
sensors significantly impacts the effectiveness of IMU-based
attacks.

418

Zeng Li, Chuan Yan, Liuhuo Wan, Hui Zhuang, et al.

It is worth noting that, since users inevitably interact with
the attack app through tap interactions , the attacker app
can always collect some training ground truth data that is
outside of the training set, which ultimately benefits the at-
tacker. Moreover, there is a certain degree of consistency in
input features across different users, as many papers have ex-
perimentally verified [16, 17, 21, 61]. For instance, as shown
in [16], when targeting 4-digit PIN passwords, the top-5 ac-
curacy before and after cross-user adaptation reached 43%
and 30% respectively.

8 Discussions on Mitigation and Limitation
8.1 Expanding the Discovery

The resource contention side-channel essentially involves
equal contenders inadvertently revealing information about
themselves while competing for limited resources. Beyond
the attacks discussed and evaluated in this paper, this side-
channel can also be applied to other contention scenarios in
Android, such as competing for network bandwidth or GPU
processing power. It is also applicable to similar contention
scenarios in other systems like i0S, Windows, and Linux.

The shared sensor reading side-channel arises from the
lax permission management for windowed apps on Android,
which allows them to read IMU data at the maximum rate.
This side-channel can provide even more detailed informa-
tion. By applying the method described in [35], we found
that in multi-window mode, an adversary app could recover
the sound output of another app via the IMU, achieving an
average Mel-Cepstral Distortion (MCD) value of 6.85 dB (an
MCD value less than 8 is considered effective [57]).

We have omitted the detailed evaluation results of these
extended experiments due to space constraints, but they are
available in the corresponding open-source repository.

8.2 Potential Mitigations

Our IMU-based attack primarily exploits the system’s lax
control over sensor access in multi-window modes. An adap-
tive sensor access management approach could be imple-
mented to counteract side-channel attacks based on shared
sensor readings. For instance, in multi-window mode, apps
not in focus could be restricted to accessing IMU sensors at
a lower sampling rate. This would allow basic functionalities
reliant on IMU sensor readings to continue working while
significantly degrading the accuracy of attacks.

As for the proposed contention side-channel, it primarily
exploits the simplistic priority management in multi-window
modes, where apps operate at similar priority levels to en-
hance the multitasking user experience. Below, we provide
mitigations at the system and app levels.

WinSpy: Cross-window Side-channel Attacks on Android’s Multi-window Mode

8.2.1 System-Level Mitigations. At the system level, miti-
gations can be made in areas such as scheduling mechanisms,
detection methods, and resource allocation.

Adaptive Priority Management Mechanism. The re-
source allocation priority of multi-window apps can be dy-
namically adjusted based on user interaction focus. By as-
signing higher scheduling weights to the focused apps, the
resource contention intensity of non-focused apps can be re-
duced, thereby weakening the ability of attackers to capture
resource usage fingerprints.

Randomized Resource Allocation Strategy. Controlled
random perturbations can be introduced during scheduling,
such as minor fluctuations in CPU time slice allocation, to
destabilize the temporal patterns of resource contention.
Coarse-Grained Resource Allocation. Non-uniform,
coarse-grained resource allocation, such as batch CPU time
slice allocation in 50ms intervals, can be adopted to minimize
the leakage of fine-grained resource usage characteristics.
Behavior-Based Attack Detection. The resource usage
patterns of multi-window apps, such as CPU utilization and
memory access frequency, can be monitored. Machine learn-
ing models can then be deployed to identify abnormal con-
tention behaviors, such as persistent high resource consump-
tion without valid business logic, and proactively isolate or
restrict resource access for suspicious apps.

Resource Isolation and Pre-allocation: before an app ex-
ecutes high-risk tasks, the system can pre-allocate necessary
resources, such as CPU, memory, and etc..

8.2.2 Application-Level Mitigations. At the app level,
mitigations require the app to redesign the execution process
of key tasks.

Dynamic Noise Injection: injecting lightweight random
computational tasks (e.g., simple CPU calculations or mem-
ory access) during critical operations of victim apps can
obscure execution signatures of important tasks.
Resource-Agnostic Task Design: sensitive operation work-
flows can be redesigned to decouple execution time from
CPU resource allocation. By implementing constant-time
algorithms, such as the timing-attack-resistant design in
AES encryption, the leakage of operational details through
resource competition-induced temporal variations can be
prevented at a more fundamental level.

8.3 Limitations

To the best of our knowledge, we are the first to work on im-
plementing app-level side-channel attacks to multi-window
mode. While promising accuracies have been achieved for
several side-channel attacks investigated in this paper, our
work still has some limitations.

Multi-window with multi-apps. Although the introduc-
tion of multi-window mode is primarily intended to enable

419

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

two apps to run efficiently simultaneously, such as watching
a video in a floating window while browsing the web or
using split-screen mode to simultaneously edit a document
and check emails, it also supports the parallel operation of
more than two apps. This introduces new challenges in fin-
gerprinting based on resource contention, which we leave
as a future direction of exploration.

Performance and stealth. Our attack involves significant
CPU utilization, which may lead to performance issues on
mobile devices, such as slowed applications, overheating, or
rapid battery drain—symptoms that could potentially alert
users. However, in most off-the-shelf smartphones, the CPU’s
energy consumption is relatively low, whereas components
such as the display and baseband modules contribute signif-
icantly to overall power usage. Therefore, the attack could
still be covert on such devices.

Variable positioning of interactive elements. From the
evaluation results on IMU-based digit classification, we find
that the simple 1D-CNN classifier cannot accurately classify
digits when the numerical keypad is located at the bottom
of the phone, compared to when the keypad is in the middle.
However, for most apps, the keypad is normally located at
the bottom. This issue could be addressed by designing more
sophisticated signal processing and classification methods
that better capture the characteristics within the typing-
induced IMU time-series than a simple 1D-CNN, which is
not the focus of this paper.

9 CONCLUSION

In this paper, we investigate significant security and privacy
risks introduced by multi-window mode and find several vul-
nerabilities in this mode, revealing high-risk side channels,
leading to potential breaches of user privacy. We develop
WinSpy, a cross-window side-channel attack framework ex-
ploiting resource contention and shared sensor readings in
multi-window environments. Extensive evaluations demon-
strated that WinSpy effectively performs app launch, website
launch, and in-app activity fingerprinting. Additionally, it
leverages IMU sensors to accurately detect and localize user
tap events, allowing for the inference of sensitive interac-
tions within victim apps by tracking subtle motion patterns.
Our findings reveal that WinSpy achieves higher accuracy
in side-channel attacks within multi-window mode, primar-
ily due to simplified resource contention management and
shared permissions among apps in this mode. These results
underscore the urgent need for enhanced security measures
in multi-window mode, including more sophisticated priority
management and stricter permission controls.

References

[1] APKPure.com 2024. APKPure. APKPure.com. https://apkpure.com/
app-24h Accessed on 2024-09-05.

https://apkpure.com/app-24h
https://apkpure.com/app-24h

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

(2]
(3]
(4]

—
=)
—

[10

[t

[11

—

[12

—

(13

[t

(14

flans!

(15

=

(16]

(17]

(18

=

[19

—

[20

[t

[21]

2024. The source code of WinSpy and additional evaluation results.
https://github.com/multiwindowmode/WinSpy.

2024. Top Websites - SimilarWeb. https://www.similarweb.com/top-
websites/ Accessed on 2024-09-05.

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-
sar Pereida Garcia, and Nicola Tuveri. 2019. Port contention for fun
and profit. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
870-887.

Abeer AlJarrah and Mohamed Shehab. 2016. Maintaining user interface
integrity on Android. In 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), Vol. 1. IEEE, 449-458.

Android. [n.d.]. Android Normal Permission. https://developer.
android.com/guide/topics/permissions/overview#normal. Accessed:
2024-09-05.

Android. 2024. Android Multi-Resume. Android. https://source.android.
com/docs/core/display/multi_display/multi-resume

Android. 2024. Market share of mobile operating sys-
tems worldwide from 2009 to 2024, by quarter. Android.
https://www.statista.com/statistics/272698/global-market-share-
held-by-mobile-operating-systems-since-2009/

Android. 2024. Multi-window support. Android. https://developer.
android.com/guide/topics/large-screens/multi-window-support
Android. 2024. Sensors Rate Limiting. Android Develop-
ers. https://developer.android.com/develop/sensors-and-location/
sensors/sensors_overview#sensors-rate-limiting Accessed: 09-03,
2024.

Android. 2024. Sensors Rate Limiting Parameter. Android Devel-
opers. https://developer.android.com/reference/android/hardware/
SensorManager#SENSOR_DELAY_GAME Accessed: 09-05, 2024.
Android Developers. 2024. Android 7.0 for Developers. https://
developer.android.com/about/versions/nougat/android-7.0 Accessed:
2024-09-05.

Android Developers. 2024. App Sandbox. Available online. https:
//source.android.com/docs/security/app-sandbox Accessed: 2024-09-
05.

Android Developers. 2024. Processes and Threads. Available on-
line. https://developer.android.com/guide/components/processes-and-
threads Accessed: 2024-09-05.

AppBrain. 2023. The most common Android OS versions currently in-
stalled on Android devices (phones and tablets) used by AppBrain SDK
users. https://www.appbrain.com/stats/top-android-sdk-versions
Adam] Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M Smith. 2012.
Practicality of accelerometer side channels on smartphones. In Pro-
ceedings of the 28th annual computer security applications conference.
41-50.

Adam J Aviv and Jonathan M Smith. 2012. Side channels enabled
by smartphone interaction. Ph.D. Dissertation. Ph. D. dissertation,
Pennsylvania State University.

Zhongjie Ba, Tianhang Zheng, Xinyu Zhang, Zhan Qin, Baochun Li,
Xue Liu, and Kui Ren. 2020. Learning-based Practical Smartphone
Eavesdropping with Built-in Accelerometer.. In NDSS, Vol. 2020. 1-18.
Daniel Bader. 2018. Multi-Window on phones is the best Android feature
you’re probably not using. https://www.androidcentral.com/multi-
window-phones-best-android-features Accessed: 2024-09-05.
Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio,
Christopher Kruegel, and Giovanni Vigna. 2015. What the app is that?
deception and countermeasures in the android user interface. In 2015
IEEE Symposium on Security and Privacy. IEEE, 931-948.

Liang Cai and Hao Chen. 2011. {TouchLogger}: Inferring Keystrokes
on Touch Screen from Smartphone Motion. In 6th USENIX Workshop
on Hot Topics in Security (HotSec 11).

420

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Zeng Li, Chuan Yan, Liuhuo Wan, Hui Zhuang, et al.

Qi Alfred Chen, Zhiyun Qian, and Z Morley Mao. 2014. Peeking into
your app without actually seeing it:{UI} state inference and novel
android attacks. In 23rd USENIX Security Symposium (USENIX Security
14). 1037-1052.

Yimin Chen, Xiaocong Jin, Jingchao Sun, Rui Zhang, and Yanchao
Zhang. 2017. POWERFUL: Mobile app fingerprinting via power anal-
ysis. In IEEE INFOCOM 2017-IEEE Conference on Computer Communi-
cations. IEEE, 1-9.

Codiant. 2023. Foldable Devices and App Development: Glimpse of
Future 2023. https://codiant.com/blog/foldable-devices-and-app-
development-in-future/ Accessed: 2024-09-05.

Patrick Cronin, Xing Gao, Haining Wang, and Chase Cotton. 2021. An
exploration of ARM system-level cache and GPU side channels. In Pro-
ceedings of the 37th Annual Computer Security Applications Conference.
784-795.

Android Developers. 2024. Performance Overview. https://developer.
android.com/topic/performance/overview. Accessed: 2024-09-05.
Android Developers. 2024. Performance Threads. https://developer.
android.com/topic/performance/threads. Accessed: 2024-09-05.
Android Developers. 2024. Processes and Threads. https://developer.

android.com/guide/components/processes-and-threads. Accessed:
2024-09-05.
Android Developers. 2024. Sensors Overview. https:

//developer.android.com/develop/sensors-and-location/sensors/
sensors_overview#only-gather-sensor-data-in-the-foreground.
Accessed: 2024-09-05.

Debopriya Roy Dipta and Berk Gulmezoglu. 2022. Df-sca: Dynamic
frequency side channel attacks are practical. In Proceedings of the 38th
Annual Computer Security Applications Conference. 841-853.

Rubens Eishima. 2022. Multi-tasking on Android: How to use split-screen
mode. https://www.nextpit.com/how-to-split-screen-android-devices
Accessed: 2024-09-05.

Marvin Gabriel. 2023. HUAWEI Mate X3: The Best Foldable Smartphone
There Is. https://techbroll.com/2023/05/huawei-mate-x3-the-best-
foldable-smartphone-there-is.html Accessed: 2024-09-05.

Google. 2024. Android Developers - Activity Lifecycle. https://developer.
android.com/guide/components/activities/process-lifecycle

Chenkai Guo, Tianhong Wang, Qianlu Wang, Naipeng Dong, Xi-
angyang Luo, and Zheli Liu. 2025. Fratricide! Hijacking in Android
Multi-window. IEEE Transactions on Dependable and Secure Computing
(2025).

Pengfei Hu, Hui Zhuang, Panneer Selvam Santhalingam, Riccardo
Spolaor, Parth Pathak, Guoming Zhang, and Xiuzhen Cheng. 2022.
Accear: Accelerometer acoustic eavesdropping with unconstrained
vocabulary. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
1757-1773.

Alexander S La Cour, Khurram K Afridi, and G Edward Suh. 2021. Wire-
less charging power side-channel attacks. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security.
651-665.

Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun Hu, and
Qing Wang. 2020. Owl eyes: Spotting ui display issues via visual under-
standing. In Proceedings of the 35th IEEE/ACM international conference
on automated software engineering. 398—409.

Anindya Maiti, Oscar Armbruster, Murtuza Jadliwala, and Jibo He.
2016. Smartwatch-based keystroke inference attacks and context-
aware protection mechanisms. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. 795-806.
Anindya Maiti, Murtuza Jadliwala, Jibo He, and Igor Bilogrevic. 2018.
Side-channel inference attacks on mobile keypads using smartwatches.
IEEE Transactions on Mobile Computing 17, 9 (2018), 2180-2194.

https://www.similarweb.com/top-websites/
https://www.similarweb.com/top-websites/
https://developer.android.com/guide/topics/permissions/overview#normal
https://developer.android.com/guide/topics/permissions/overview#normal
https://source.android.com/docs/core/display/multi_display/multi-resume
https://source.android.com/docs/core/display/multi_display/multi-resume
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://developer.android.com/guide/topics/large-screens/multi-window-support
https://developer.android.com/guide/topics/large-screens/multi-window-support
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview#sensors-rate-limiting
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview#sensors-rate-limiting
https://developer.android.com/reference/android/hardware/SensorManager#SENSOR_DELAY_GAME
https://developer.android.com/reference/android/hardware/SensorManager#SENSOR_DELAY_GAME
https://developer.android.com/about/versions/nougat/android-7.0
https://developer.android.com/about/versions/nougat/android-7.0
https://source.android.com/docs/security/app-sandbox
https://source.android.com/docs/security/app-sandbox
https://developer.android.com/guide/components/processes-and-threads
https://developer.android.com/guide/components/processes-and-threads
https://www.appbrain.com/stats/top-android-sdk-versions
https://www.androidcentral.com/multi-window-phones-best-android-features
https://www.androidcentral.com/multi-window-phones-best-android-features
https://codiant.com/blog/foldable-devices-and-app-development-in-future/
https://codiant.com/blog/foldable-devices-and-app-development-in-future/
https://developer.android.com/topic/performance/overview
https://developer.android.com/topic/performance/overview
https://developer.android.com/topic/performance/threads
https://developer.android.com/topic/performance/threads
https://developer.android.com/guide/components/processes-and-threads
https://developer.android.com/guide/components/processes-and-threads
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview#only-gather-sensor-data-in-the-foreground
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview#only-gather-sensor-data-in-the-foreground
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview#only-gather-sensor-data-in-the-foreground
https://www.nextpit.com/how-to-split-screen-android-devices
https://techbroll.com/2023/05/huawei-mate-x3-the-best-foldable-smartphone-there-is.html
https://techbroll.com/2023/05/huawei-mate-x3-the-best-foldable-smartphone-there-is.html
https://developer.android.com/guide/components/activities/process-lifecycle
https://developer.android.com/guide/components/activities/process-lifecycle

—

—

=

[l

=

[l

—

= =

—

—_ =

[l

WinSpy: Cross-window Side-channel Attacks on Android’s Multi-window Mode

[40] Bjorn Mathis, Vitalii Avdiienko, Ezekiel O Soremekun, Marcel Bohme,

and Andreas Zeller. 2017. Detecting information flow by mutating in-
put data. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 263-273.

Nikolay Matyunin, Yujue Wang, Tolga Arul, Kristian Kullmann, Jakub
Szefer, and Stefan Katzenbeisser. 2019. Magneticspy: Exploiting mag-
netometer in mobile devices for website and application fingerprinting.
In Proceedings of the 18th ACM Workshop on Privacy in the Electronic
Society. 135-149.

Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and
Romit Roy Choudhury. 2012. Tapprints: your finger taps have finger-
prints. In Proceedings of the 10th international conference on Mobile
systems, applications, and services. 323-336.

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-
Ghazaleh. 2018. Rendered insecure: Gpu side channel attacks are
practical. In Proceedings of the 2018 ACM SIGSAC conference on com-
puter and communications security. 2139-2153.

Gadgets Now. 2020. How to use the multi-window feature on Android
smartphones. https://www.gadgetsnow.com/how-to/how-to-use-
the-multi-window-feature-on-android-smartphones/articleshow/
77200949.cms Accessed: 2024-09-05.

Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang.
2012. Accessory: password inference using accelerometers on smart-
phones. In proceedings of the twelfth workshop on mobile computing
systems & applications. 1-6.

Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. 2021.
Lord of the ring (s): Side channel attacks on the {CPU} {On-Chip}
ring interconnect are practical. In 30th USENIX Security Symposium
(USENIX Security 21). 645-662.

Gerald Palfinger, Bernd Priinster, and Dominik Julian Ziegler. 2020.
Androtime: Identifying timing side channels in the android api. In 2020
IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom). IEEE, 1849-1856.
Tse-Yu Pan, Chih-Hsuan Kuo, Hou-Tim Liu, and Min-Chun Hu. 2018.
Handwriting trajectory reconstruction using low-cost imu. IEEE Trans-
actions on Emerging Topics in Computational Intelligence 3, 3 (2018),
261-270.

Chuangang Ren, Peng Liu, and Sencun Zhu. 2017. WindowGuard:
Systematic Protection of GUI Security in Android.. In NDSS.

Shirish Singh, Devu Manikantan Shila, and Gail Kaiser. 2019. Side
channel attack on smartphone sensors to infer gender of the user.
In Proceedings of the 17th Conference on Embedded Networked Sensor
Systems. 436-437.

Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and Stefan Mangard.
2018. Procharvester: Fully automated analysis of procfs side-channel
leaks on android. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security. 749-763.

statistics. 2024. Monthly active users of Alipay. statistics. https://www.
statista.com/statistics/1395691/china-alipay-monthly-active-users/
statistics. 2024. Most popular global mobile messenger apps. statis-
tics. https://www.statista.com/statistics/258749/most-popular-global-
mobile-messenger-apps/

Xianbo Wang, Yikang Chen, Ronghai Yang, Shangcheng Shi, and
Wing Cheong Lau. 2020. Fingerprint-jacking: Practical fingerprint
authorization hijacking in Android apps. Blackhat, Europe, Tech. Rep.
Blackhat 2020 (2020).

[55] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Ab-

dullah Al Faruque. 2020. Leaky dnn: Stealing deep-learning model
secret with gpu context-switching side-channel. In 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN)). IEEE, 125-137.

ACM MobiCom 25, November 3-7, 2025, Hong Kong, Hong Kong

[56] Zhi Xu, Kun Bai, and Sencun Zhu. 2012. Taplogger: Inferring user

inputs on smartphone touchscreens using on-board motion sensors.
In Proceedings of the fifth ACM conference on Security and Privacy in
Wireless and Mobile Networks. 113-124.

Chen Yan, Guoming Zhang, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang,
and Wenyuan Xu. 2019. The feasibility of injecting inaudible voice
commands to voice assistants. IEEE Transactions on Dependable and
Secure Computing 18, 3 (2019), 1108-1124.

Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. 2015. A study
on power side channels on mobile devices. In Proceedings of the 7th
Asia-Pacific Symposium on Internetware. 30-38.

Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and Kiran S
Balagani. 2016. On inferring browsing activity on smartphones via
USB power analysis side-channel. IEEE Transactions on Information
Forensics and Security 12, 5 (2016), 1056—-1066.

Lingyun Ying, Yao Cheng, Yemian Lu, Yacong Gu, Purui Su, and Deng-
guo Feng. 2016. Attacks and defence on android free floating windows.
In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security. 759-770.

Cheng Zhang, Anhong Guo, Dingtian Zhang, Yang Li, Caleb Southern,
Rosa I Arriaga, and Gregory D Abowd. 2016. Beyond the touchscreen:
an exploration of extending interactions on commodity smartphones.
ACM Transactions on Interactive Intelligent Systems (TiiS) 6, 2 (2016),
1-23.

Kehuan Zhang and XiaoFeng Wang. 2009. Peeping Tom in the Neigh-
borhood: Keystroke Eavesdropping on Multi-User Systems.. In USENIX
Security Symposium, Vol. 20. 23.

Nan Zhang, Kan Yuan, Muhammad Naveed, Xiaoyong Zhou, and Xi-
aoFeng Wang. 2015. Leave me alone: App-level protection against
runtime information gathering on android. In 2015 IEEE Symposium
on Security and Privacy. IEEE, 915-930.

Yicheng Zhang, Carter Slocum, Jiasi Chen, and Nael Abu-Ghazaleh.
2023. It’s all in your head (set): Side-channel attacks on {AR/VR}
systems. In 32nd USENIX Security Symposium (USENIX Security 23).
3979-3996.

Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed,
Xiaorui Pan, XiaoFeng Wang, Carl A Gunter, and Klara Nahrstedt.
2013. Identity, location, disease and more: Inferring your secrets from
android public resources. In Proceedings of the 2013 ACM SIGSAC con-

ference on Computer & communications security. 1017-1028.

https://www.gadgetsnow.com/how-to/how-to-use-the-multi-window-feature-on-android-smartphones/articleshow/77200949.cms
https://www.gadgetsnow.com/how-to/how-to-use-the-multi-window-feature-on-android-smartphones/articleshow/77200949.cms
https://www.gadgetsnow.com/how-to/how-to-use-the-multi-window-feature-on-android-smartphones/articleshow/77200949.cms
https://www.statista.com/statistics/1395691/china-alipay-monthly-active-users/
https://www.statista.com/statistics/1395691/china-alipay-monthly-active-users/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/

	Abstract
	1 Introduction
	2 Related Work
	3 Introduction to Multi-window Mode
	4 Exposure Definition
	5 Attack Overview
	5.1 Attack Scenario
	5.2 Adversarial Capabilities and Attacks Classification

	6 Design and Evaluation on Attacks based on Resource Contention
	6.1 Design of Adversary App
	6.2 Hardware and Evaluation Setup
	6.3 App Launch Fingerprinting
	6.4 Website Launch Fingerprinting
	6.5 In-app Activities Fingerprinting
	6.6 Extended Discussion

	7 Design and Evaluation on Attacks based on Shared Sensor Readings
	7.1 Design of Adversary App
	7.2 IMU-based Tap Position Inference

	8 Discussions on Mitigation and Limitation
	8.1 Expanding the Discovery
	8.2 Potential Mitigations
	8.3 Limitations

	9 CONCLUSION
	References

