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Abstract

Cloud-based workspace systems, such as Google Workspace and
Microsoft OneDrive, have enabled third-party developers to create
and upload functionality-rich applications (referred to as add-ons).
Existing studies have primarily examined user-centric data protec-
tion and permission management of this emerging ecosystem, but
the underlying DevOps mechanisms that regulate add-on develop-
ment, deployment, and operation remain largely unexplored.

In this work, we conduct the first developer-centric investiga-
tion of these DevOps mechanisms. We propose a hybrid method
that combines a static analysis to abstract development and inte-
gration (i.e., deployment) (Dev) models and a dynamic analysis
to add-ons’ runtime operation workflows (Ops). It yields insights
into the DevOps lifecycle of add-ons, unveiling associated attack
surfaces and multiple types of security vulnerabilities, including
source code leakage, code tampering and secret key exposure. Our
large-scale evaluation of 5,300 Google Workspace add-ons reveals a
concerning status quo of the ecosystem: 274 add-ons are subject to
source code leakage, including widely-used ones with over 100,000
users. Among them, 96 (around one third) expose the secret keys
of developers, e.g., PayPal merchant secret key and secret keys to
access the developer’s back-end databases.
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1 Introduction

Cloud-based workspace systems, such as Google Workspace [4]
and Microsoft OneDrive [15], have become essential tools for indi-
viduals and organizations by enabling efficient data management
and seamless team collaboration. They offer a cloud-hosted en-
vironment where users can store, access and share documents
through browser-based features, without installing or updating
software like traditional desktop applications (e.g., Microsoft Of-
fice 365). Instead, through the web browser alone, users can send
messages (Google Chat), hold meetings (Google Meet), and collabo-
rate on documents (Google Docs). This convenience has driven the
widespread adoption of workspaces. Taking as an example Google
Workspace, the leading workspace by user base, it has attracted
over 3 billion active users [7].

To further expand workspace capabilities and meet diverse domain-
specific user needs, workspace providers have introduced app mar-
ketplaces for third-party apps, known as add-ons. Third-party de-
velopers are enabled to create and publish add-ons that leverage the
workspace APIs to provide specialized solutions. Examples of such
add-ons include Al-enhanced tools for email composing [6], smart-
home device managers [10], and code repository integrations [5].
They have greatly extended the core functionality of the workspace,
leading to the rise of a workspace add-on ecosystem that continues
to gain popularity.

Unlike mobile app development, which involves a heavy full-
stack implementation, workspaces provide a lightweight DevOps en-
vironment for add-on developers. They expose easy-to-use APIs for
the add-on developers to focus on add-on-related logic. For example,
consider an add-on designed to upload user email attachments to the
Box storage. By utilizing APIs, such as GetEmailAttachment (ID),
the add-on can easily fetch attachments and then send a web request
to the Box service interface to complete the task. The development
and deployment of add-on projects are cloud-based, and add-on
developers can invite collaborators for Dev tasks. After deployment,
add-on developers need to maintain and monitor interactions with
service interfaces (e.g. the Box service interface) during Ops phase.
While this lightweight DevOps design enhances convenience, it also
introduces novel security attack surfaces for developers.

Recent research has extensively investigated security issues in
add-ons, focusing on their permission control and data access. Re-
garding permissions, prior studies [34, 61, 62, 64, 68] utilize dy-
namic testing on add-ons to analyze permissions request and use,
revealing that add-ons are subject to permission escalation and
excessive permission requesting. In terms of user data protection,
some studies examine potential data leakage in add-ons through
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taint analysis [42, 63, 66, 70]. However, current research primarily
focuses on user-centric security issues, with limited investigation
into the add-on developer’s perspective. The research question of
whether the confidentiality and integrity of developer assets (e.g.,
add-on source code, add-on project development/deployment and ser-
vice interface interaction) are ensured throughout the entire DevOps
lifecycle has been largely open.

Our work. In this work, we conduct a comprehensive study of
the DevOps (development, deployment, and operations) in Google
Workspace (workspace for short hereafter) add-on ecosystem. Our

work aims to explore three developer-centric research questions (RQs):

What are the DevOps models that developers follow to develop, de-
ploy, and operate the add-ons (RQ1), what security issues can arise
from such DevOps models (RQ2), and what is the extent these secu-
rity vulnerabilities affect real-world add-on projects that have passed
workspace official vetting (RQ3).

RO1. Understanding DevOps models of add-ons. We adopt a
hybrid analysis methodology, combining static and dynamic anal-
ysis, to understand the development, deployment and operation
models of add-ons. A significant challenge is that the underlying
DevOps of add-ons is a black box and lacks comprehensive docu-
mentation from the provider. To address this, we create our own
test add-ons and conduct the testing on development, deployment
and operation around them. Our exploration reveals that, each add-
on is globally unique, identified by its project ID, and is under a
development and production environment isolation mechanism. The
add-on developers must handle or maintain the interaction with
two types of service interfaces during Ops phase. Our analysis pro-
vides an in-depth understanding of the internals of add-on DevOps,
laying the groundwork for our security assessment. We detail our
analysis for RQ1 in Section 3.

RQ2. Investigating the security implications in add-ons’
DevOps models. Based on the revealed DevOps mechanisms, we
examine potential attack surface in add-on projects. We examine
each phase a developer must go through and analyze whether an
attacker can tamper with it based on its capabilities, considering the
developer’s code, permissions, and access to sensitive services. We
successfully pinpoint three types of security issues associated with
the DevOps cycle: the leak of add-on source code, the project de-
velopment/deployment permission leakage, and secret key leakage,
which allow access to sensitive resources such as developers’ secret
keys used to access databases or services (i.e., confidentiality) and
unauthorized modification and deployment of add-on project (i.e.,
integrity). These vulnerabilities highlight the weaknesses present
in the current add-on DevOps models. The component is detailed
in Section 4.

ROQ3. Studying the impact of security issues in real-world
add-on projects. To assess the impact of these developer-centered
security vulnerabilities in real-world add-on projects, we develop
a detector to automate the detection process for the three types
of leakage. The detector constructs links for various operations
on the add-on code and the project, such as code revision and
code deployment, using crucial parameters extracted from add-on
network traffic. The links are then examined to check whether an
attacker has the capability to conduct those operations without
authorization. It also performs a taint analysis to identify secret
keys used to interact with service interfaces. Our analysis of 5,300
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official add-ons finds that 274 (5.2%) are subject to source code
leakage. Among these 274 add-ons, 49 (17.9%) are also vulnerable
to development/deployment permission leakage, and 96 (35.1%) are
at risk of secret key leakage. RQ3 is detailed in Section 5.
Contributions. We summarize our contributions as follows:

e Understanding the DevOps models of add-ons. We in-
vestigate and thoroughly explain the DevOps models of
workspace add-ons. From the Dev perspective, we illustrate
how add-on projects are registered, developed, and deployed,
along with their corresponding permission management.
From the Ops perspective, we focus on how developers han-
dle operational tasks, particularly managing service interface
interactions in add-on projects.

e A systematic security assessment and the practical im-
pact. We analyze attack surfaces arising from the underlying
DevOps mechanisms, and have identified three types of vul-
nerabilities. The add-on code and project permission leakage
can sabotage the confidentiality and integrity of the add-on
project. The secret key leakage could grant an attacker’s
access to service interfaces essential for add-on developers,
leading to data leakage and, in severe cases, unauthorized
modifications to services provided by the service interface.
Revealing the status quo of the security issues of add-
on DevOps. Our findings indicate that the current DevOps of
add-on is not sufficiently safeguarded. We provide mitigation
strategies to help add-on developers address these issues. As
the first study on the DevOps of add-on projects, our research
not only contributes to improving existing projects but also
sheds light on the future development of this ecosystem.

Ethics and Disclosure. To uphold ethical research practices, we
have removed identifiable information from affected add-ons in
our demonstrations and case studies. We have never used leaked
secret keys to access data exposed by the add-on developers’ ser-
vice interface. All detected vulnerabilities were reported to Google
Workspace through the Bug Hunter [18]. We also contacted the
affected add-on developers via email. Both Google and the add-on
developers acknowledged the identified vulnerabilities. Although
Google does not disclose their mitigation for these issues, our re-
cent visit has found that they have disabled certain features in the
add-on DevOps process to address these vulnerabilities.
Roadmap. RQ1 (Section 3) uncovers the DevOps models through
hybrid analysis. These models form the basis for identifying poten-
tial attack points in RQ2 (Section 4) and analyzing the discovered
issues in RQ3 (Sections 5).

2 Background

Architecture from the developer side. In this section, we briefly
introduce the architecture of workspace add-ons, to facilitate the
understanding of our analysis. There are four parties involved in
ensuring the normal functionality of add-on projects, which are
workspace client, workspace server, add-on front-end and
add-on back-end. Each party is responsible for different aspects
of this ecosystem.
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Figure 1: User interaction workflow of the add-on

e Workspace Client (WC) is the web application provided
by workspace. WC is directly displayed to users and commu-
nicates with them in the end browser. In addition to native
applications, it renders the HTML pages of add-ons.

e Workspace Server (WS) securely manages sensitive user
resources and workspace-related services, such as authenti-
cation secret keys, data, and access permissions. It verifies
user and add-on identities to ensure authorized access. Be-
sides direct access from users, add-on developers can inter-
act with it via exposed APIs. The WS handles requests from
users and add-ons, executing actions such as data retrieval
or modification.

e Add-on Front-end (AF) is running on top of workspace
client. AF consists of two modules: the render layer, which
includes HTML pages, and the logic layer, which contains
JavaScript code. The render layer serves as the core to com-
municate with users. The logic layer would interact with the
render layer through an event handler. In the current design,
the logic layer is only visible to the WS, remains invisible
to end users, and is not sent to the browser side. AF is the
add-on project that developers must provide for workspace,
and our work investigates the security risks inherent in the
DevOps model of add-on projects.

e Add-on Back-end (AB) refers to the server or service owned
and maintained by the developer. It interacts with both
AF and WS through service interfaces, facilitating resource
transfers for users and providing services to front-end users.

Interaction from the user side. We examine the communica-
tion between these four parties during the user’s interaction with
the add-on. As illustrated in Figure 1, when the user initiates the
workspace (WC) and interacts with the front-end render layer (AF),
specific trigger events (e.g., the purchase button is clicked, Step @)
are transmitted to the logic layer via network requests. The logic
layer (AF) then executes the corresponding function. During this
process, it may communicate with the workspace server (WS) to
access certain services (e.g., retrieving the current user’s ID, Step
@ and @). Additionally, the logic layer may interact with add-on’s
back-end (AB), such as inserting the user’s paid license (Step @)
into the add-on developer’s database through the service interface.
As shown in Figure 1, the add-on back-end is maintained on the
add-on server rather than on the workspace server to ensure the
confidentiality of both add-on data and service details.

3 Understanding DevOps Models of Add-ons
(RQ1)

Due to the black-box nature of the workspace and add-ons, we
resort to building a test add-on for our analysis, comprising HTML
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pages and a JavaScript file. Additionally, we set up an add-on server
to handle data requests from its client.

3.1 DevOps exploration

Dev exploration. The development environment is implemented
as a web-based interface. To extract the Dev phase protocol, we
develop a Selenium-based [35] web element detector to analyze,
identify, and recognize those elements that the developer can inter-
act with during the Dev phase. The detector extracts three types of
elements [40] that encompass general scenarios: clickable buttons,
editable text fields, and selectable options, by searching for element
tags and attributes. For example, a button may appear as a <button>
tag or a <div> with the attribute role="button". To further under-
stand the functionality of the identified elements, we interact with
them directly. For editable text fields, we rely on manual input. This
approach allows for more flexibility and precision in code-editing
environments, which require advanced programming expertise for
complex logic flow control and customization. To ensure efficiency,
we use code snippets from the official template [30] provided by
workspace for these editable text fields. Click actions are initiated
for buttons, while each selectable option is chosen one by one.
We record the changes in the HTML pages of the web interface
and network packets that occur before and after each operation
(e.g., clicking a button), and then compare the differences. This
differential analysis reveals that any operations (e.g., modification)
in the add-on project do not take effect immediately until the de-
ploy button is clicked. This way, we find that there is a production
environment managed by the workspace, to which developers can
push the developed add-on code.
Ops exploration. We continue to explore how developers handle
service connections and maintenance, which constitute the Ops
phase. After successfully deploying the test add-on, we monitor
both the web requests initiated from and received by the add-on
for one week. This step enables us to extract all the services that
add-on developers must interact with and monitor during the Ops
phase. Next, we classify all captured web requests based on their
domain names. Finally, we use Django’s request handling mecha-
nism to identify the interfaces responsible for processing these web
requests, capturing both the interface name and the parameters
passed to each interface. Through this systematic dynamic analysis,
we identify two types of service interfaces (including the interface
name and its corresponding parameters) that add-on developer
need to interact or maintain : 1) service interfaces implemented
by add-on developers, and 2) service interfaces implemented by
workspace. Interaction details are given in Section 3.3.

3.2 Add-on Dev Phase

This section presents the uncovered Dev phase (Figure 2).

Add-on registration. All add-on projects are stored on a cloud plat-
form provided by workspace and are referred to as cloud projects [13].
Therefore, the developer is required to register the add-on project
first (Step (D in Figure 2). During registration, the add-on is as-
signed a globally unique project ID. For developers managing mul-
tiple add-ons, each add-on is assigned a unique project ID.

Add-on development & updating (development environment).
After registration, the developer can build (Step ) an add-on
in their development environment. The development environment
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allows the developer to update their deployed add-on, such as
adding features or fixing bugs. During this phase, users and cloud-
based workspaces remain unaffected. Users continue to use the
previously deployed add-on in the production environment.
Add-on deployment (production environment). Once the de-
veloper finishes developing or updating the add-on project, they can
deploy the updated version. After deployment, the add-on code (AC)
becomes available in the production environment (Step ). Every
time a user interacts with the add-on, workspace fetches and ren-
ders the newly deployed version from the production environment.
If needed, the developer can also revert to a previous deployment,
providing flexibility in managing updates and ensuring stability.

The registration must be completed by the add-on owner. How-
ever, the owner can invite collaborators (through invite button)
with authorized access for development (DevPerm in Step (2)) and
deployment (DepPerm in Step 3)) based on our exploration, as
indicated by the unlock icon (af") in Figure 2.

3.3 Add-on Ops Phase

As identified during the Ops exploration (Section 3.1), there are two
types of service interfaces that add-on developers must interact with
and maintain. If these exposed service interfaces are not securely
protected, they can be exploited by attackers, leading to potential
security risks.

Service interfaces implemented by workspace developer: As
shown by the green lines in Figure 3, for add-on developer to access

such service interfaces, they queries with the app id and user id
(Step (D) to retrieve the secret key (WK specified for the user). Then
the add-on developer simply provides this WK (Step (2)) to invoke
the interface and access resources or services specified by the user
id.

Service interfaces implemented by add-on developer: Access
to the add-on service interfaces is controlled through permission
management implemented by the add-on developer, and this can
vary significantly depending on the customized implementation.
We use a simple yet general workflow in Figure 3 to represent
this process: when external services communicate with the add-
on interface (orange lines), they must provide the add-on secret
key (AK) for verification (Step [H).

4 Assessing Security Implications within
Add-on DevOps (RQ2)

Based on the extracted DevOps model, we explore developer-centred

attack surface against the critical assets of the developer based on

a realistic threat model. We define a realistic threat model (Sec-

tion 4.1), and then examine vulnerabilities and security implications

in the add-on DevOps lifecycle (Section 4.2).

4.1 Threat Model

Adversary. To ensure that our threat model and attack scenarios
are firmly grounded in established security research, we examine
existing work on the security of multi-entity platforms or appli-
cations [27, 38, 42, 68, 70]. They commonly adopt a threat model
involving web users who attempt to access confidential data or
permissions beyond their authorized scope, like accessing other
users’ data. In our work, we adopt a similar threat model, assuming
an adversary who has a valid workspace account and specifically
targets developers’ data or permissions. They can access the add-
on by installing it in their workspace and interacting with it as
a regular user. During this process, the adversary aims to obtain
the add-on developer’s confidential data [38, 70] (e.g., AC, WK, and
AK) or permissions [42, 68] (e.g., DevPerm and DepPerm), which are
summarized in Table 1 (column Keys/Permissions).

Adversarial capabilities. We assume that the adversary has com-
plete control over their own workspace account and devices [27, 38],
without losing practicality. This implies that the adversary can
access and interact with any add-on available in the official mar-
ketplace. Additionally, the adversary can monitor and analyze all
network traffic exchanged between workspace or add-on and their
device [38, 42, 70, 71]. We make no unrealistic assumptions about
developers’ security awareness or capability, as noted by prior
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Table 1: A summary of the attack feasibilities within the add-on DevOps

Data/Permissions Functionality Target victim Impact Feasible
Add-on Dev Phase - Registration Developer NA. X
DevPerm Development Developer & User ~ Development tampering v
DepPerm & AC Deployment Developer & User  Deployment tampering v
Add-on Ops Phase  WK: workspace secret key ~ Access to workspace service interfaces ~ User NA. X
AK: add-on secret key Access to add-on service interfaces Developer & User ~ Data leakage/Service manipulation v

Table 2: Comparison between workspace studies and our work

Platform type User-centric Developer-centric
Permissions Cross- Dev Ops

application phase phase
Google Workspace [55] [34] [23] [54] O O
Microsoft OneDrive NA. [25] [27] (o] (o]
Slack [27] [68] [27] (@) (@)

Prior work targets user-side vulnerabilities; we study developer-side ones. O-=-no
exposure, O = exposure.

work [49]. As our work focuses on the inherent security of De-
vOps, we assume that no social engineering is used. This means
that the victims (i.e., add-on developers) are not persuaded by the
adversary [71] to trivially disclose any confidential information.
They are also not tricked into taking unsafe actions [27, 61], such
as clicking maliciously crafted URLSs or installing spyware, prior
to launching the attacks presented in the paper. This assumption
aligns with STRIDE [1], which separates technical attack surfaces
from social engineering threats. Apart from interacting with the
add-on as a normal user, the adversary has no further access to the
add-on project or its service interfaces. In addition, we assume that
the workspace servers (WS) are secure and do not collude with the
adversary. Attacking such infrastructure is an orthogonal research
direction.

4.2 Attack Scenarios

As our work is the first to focus on security issues that directly affect
developers, we turn to a broader literature to guide our analysis.
Through an in-depth analysis of online developer security guide-
lines, a previous study [19] identified several developer-centered
security concerns, such as secret handling, improper permission
delegation, and mismanagement of source code storage. Building
on these concerns, we analyze the practicality [49] of attacking
each functionality in workspace’s DevOps process, covering add-
on development, deployment, and related service interfaces. This
helps us derive a comprehensive list of exploitable points, which
are summarized in Table 1. Each exploitable point is detailed below.
Dev registration.

Impractical. It is impractical to attack the add-on registration,
as it requires the adversary to control the add-on admin [27, 28],
which is beyond their attack capabilities.

Dev development.

Leakage 1: with the leak of DevPerm. The DevPerm is origi-
nally intended for authorized collaborators of the add-on project.
Existing research has revealed that with leaking DevPerm allows
the attacker to manipulate the add-on project [21, 74], such as by
inserting a backdoor code snippet [47]. If the developer is unaware

of this modification, they may unknowingly deploy a compromised
version.
Dev deployment.

Leakage 2: with the leak of AC. Theoretically, the add-on
code (AC) is inaccessible to anyone except the add-on developer and
the workspace. The workspace requires access to the add-on project
to facilitate rendering the add-on for users. However, the AC is not
transmitted to the browser side [27, 54, 55, 68] and remains invisible
to end-users. Prior studies have shown that any exposure of the AC
may result in serious compromises to code confidentiality [65, 73].

Leakage 3: with the leak of DepPerm. Similarly, if the DepPerm
is leaked, the attacker can interfere with the add-on deployment
stage. They can gain access to the add-on developers’ credentials
and use them to impersonate the developers and upload malicious
code [45, 46, 50]. They can potentially deploy any version of the add-
on, including reverting to a previous buggy version, as indicated
by the name and description of the version, thereby disrupting its
normal functionality.

A more severe case occurs if both the DevPerm and DepPerm
are leaked, as the attacker would gain nearly full control of the
add-on project. The DevPerm and DepPerm are bundled together in
the current design of workspace. Furthermore, the leak of DevPerm
and DepPerm also implies the leak of AC.

Ops service interface interaction.

Leakage 4: with the leak of AK. Developers are responsible for
managing the AK. However, under AC leakage, attackers can gain
insight into the service interfaces implemented by add-on develop-
ers, such as the interface for access databases or other services [42].
In such a situation, leaking the secret key AK [41, 42, 65, 67, 70]
enables unauthorized access to or manipulation of the developer-
maintained service through its interfaces [42, 70].

Impractical: with the leak of WK. Since WK is associated with
an individual user as shown in Figure 3, the workspace verifies
the validity of the user ID when the add-on developers request the
WK. Obtaining such a WK is difficult, as it requires the attacker to
bypass the user identification verification [33, 70] enforced by the
workspace, which is beyond the attacker’s capabilities. Furthermore,
the WK is updated with every query. Even if a valid WK is obtained,
it can only be used once before it expires [27, 69]. Therefore, we do
not consider the leakage of WK to be practical.

Comparison. We provide a comparison between our work and
existing studies in Table 2. While existing studies primarily focus
on user-centric security vulnerabilities, our work is the first to in-
vestigate vulnerabilities from a developer-centric perspective. We
analyze the most popular cloud-based workspaces, which together
account for over 90% of the market share [7, 14]: Google Workspace
(73.02% [7]), Slack (24.31% [14]), and OneDrive (0.33% [7]). All cloud-
based workspaces follow the general design discussed in Section 3.
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However, Microsoft OneDrive demonstrates resilience against de-
velopment and deployment attacks because it does not support
collaboration, only a single role, the admin has control over the
Dev phase. In such a case, the attacker would need to control the
admin, which is beyond the scope of his attack capabilities. Despite
this, it remains vulnerable to the remaining attacks. In contrast,
Google Workspace and Slack are susceptible to all DevOps-related
vulnerabilities.

5 Assessing the Prevalence of Leakage
Vulnerabilities (RQ3)

The Three-Layer Assessment Model. In this section, we focus
only on practical leaks (leakage 1 to 4). All of these exposures we
have identified are based on the Code Layer Leakage (AC, detailed
in Section 5.1), as the attacker obtains confidential code to which
they should not have access. We begin our study by examining
the leak of add-on code, then we further investigate whether the
attacker has the capability to manipulate the add-on project, which
is the Permissions Layer Leakage (DevPerm, DepPerm, detailed
in Section 5.2). Lastly, building on the code leakage, we analyze
whether the service interface is properly secured. If not, and the
add-on developer unintentionally exposes service secret keys, it
could lead to the Service Layer Leakage, detailed in Section 5.3.
We present a case study that compares normal and malicious access
scenarios to illustrate how these vulnerabilities are introduced and
their severe impacts, following the measurement of their prevalence
in real-world add-on projects that have passed vetting. Figure 4
illustrates the workflow of all leakage cases. We use dynamic anal-
ysis to extract project IDs from network traffic and generate links
to access source code and permissions, then apply taint analysis to
detect secret key leakage.

5.1 Assessment of Leak of Code

Normal Workflow. In a typical workflow, add-on projects allow
collaboration only from invited collaborators, all within the project
owner’s awareness. Access to the add-on project is restricted from
attackers.

Unauthorized Access and Attack. Figure 4 illustrates how the
add-on code is leaked from the attacker’s perspective. Specifically,
the attacker interacts with an add-on in a user role, during which a
network traffic packet containing a valid project ID is sent to the

browser, as shown in the upper left part of Figure 4. The project ID
plays an important role, as the storage address of AC can be restored
by encoding it as a parameter into a URL. Finally, we encode this
project ID into the formatted URL and attempt to access it as shown
in the lower right part (purple lines) of Figure 4. In this process, we
can get two types of responses: “You are restricted from accessing
this project;” and the normal response of the AC code. The second
situation is marked as AC leakage, and the returned result is shown
in Figure 4.

To estimate the prevalence of AC leakage, we extract the project

ID for each add-on. Since the project ID is transferred only when
the user interacts with the add-on, we built a Selenium-based [35]
tool to automate this interaction. First, we enable the use of add-on
from the marketplace by clicking the install button. Then, Selenium
launches the workspace service, such as opening a Google Doc,
and identifies the enabled add-on on the toolbar. The tool clicks the
add-on to initiate the open add-on operation, during which network
traffic is recorded. Finally, we uninstall the add-on and proceed
to the next one. The project ID is straightforward to identify, as
it is a fixed-length string. From the recorded network traffic, we
extract all 57-character-long strings. We construct the AC address,
then send web requests to verify their accessibility by unauthorized
attackers.
Evaluation. This process resulted in the identification of 274 add-
ons with AC leakage. The distribution of these add-ons is depicted
in Table 3. In general, add-ons with a larger user base are less likely
to experience AC leakage, with the percentage decreasing from
14.61% for add-ons with less than 100 users to 0.94% for add-ons
with more than 100,000 users. However, it is concerning that there
are still 11 add-ons with over 100,000 users that are vulnerable.
We categorize the vulnerable add-ons by developer and find that
while most developers own only one add-on, some have up to seven
vulnerable add-ons. There is a noticeable tendency that developers
managing multiple add-ons tend to leak all ACs.

We also measure the distribution of requested permissions for
add-on with code leakage, as shown in Figure 5. The blue bars high-
lights add-ons with code leakage. The most frequently requested
permission is Email, which appears 178 times in the leaked AC. An-
other sensitive permission, Connect to external services, is the sec-
ond most requested. This indicates that the majority of vulnerable
add-ons connect to and utilize external services. These vulnerable
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Figure 6: Permission counts in vulnerable add-ons

Table 3: The user base distribution of add-on with leaks

User base 100 100 - 1,000 1,000 - 10,000 10,000 - 100,000 100,000 +
Total Add-ons 1006 797 1142 1182 1173
#Add-on %Vuln | #Add-on %Vuln | #Add-on %Vuln | #Add-on %Vuln | #Add-on %Vuln
Add-on code 147 14.61 55 6.90 38 3.33 23 1.94 11 0.94
DevPerm& DepPerm 22 2.18 17 2.13 4 0.35 4 0.34 1 0.09
Secret key 53 5.26 20 2.51 15 1.31 7 0.59 1 0.09

add-ons primarily interact with workspace services such as email,
spreadsheets, drives, forms, and slides. A smaller proportion are
associated with classes, tags, analytics, and contacts. Attackers may
further exploit these services to compromise user privacy through
the affected add-ons. These services are either education-focused
or marketing-focused. Add-ons requesting more user permissions
pose greater security risks, as attackers can misuse them to exfil-
trate user data. As shown in Figure 6 (blue bars), the y-axis indicates
the number of requested permissions, while the x-axis shows how
many add-ons request that number of permissions. The largest
group of add-ons (a total of 41) requests 4 permissions, while some
request as many as 13 permissions.

Case Study. One add-on, Highlight, with 141,317 users, last mod-
ified on July 29, 2024, leaks its AC. We successfully retrieved the
source code of Highlight, gaining detailed knowledge of the add-on
project, including the developer key, resource storage address, and
the associated retrieval logic. The developer key, used as the devel-
oper identification to access the spreadsheets, was exposed in the
source code. As demonstrated in previous studies [25], attackers
can exploit this key and the standard API provided by Google to
impersonating the add-on developer and steal sensitive resources.

5.2 Assessment of Leak of Permissions

Normal workflow. An attacker should not be able to obtain the
DevPerm or DepPerm privileges to modify or deploy the add-on
project.

Unauthorized Access and Attacks. Similarly, the link containing
DevPerm or DepPerm can be restored by encoding project ID into the
URL as shown in the lower left of Figure 4. We use a similar method

(to that of code leakage) to verify if the attacker has gained DevPerm
and DepPerm. For all constructed links, we sent web requests to
verify whether the attacker is authorized to develop or deploy the
add-on project. Two types of responses were returned: 1) “Ask the
project owner to share the development and deployment permissions
with you”, and 2) No prompt message, but the interface to develop
or deploy the add-on project is accessible as shown in the lower
left part of Figure 4. We mark the second case as DevPerm/DepPerm
leakage (yellow lines in Figure 4).

Evaluation. As shown in Table 3, 49 add-ons leak their DevPerm
and DepPerm. This vulnerability persists even for add-ons with a
large user base. As shown in Table 3, 2.13% of add-ons with fewer
than 1,000 users are vulnerable, and approximately 0.35% of add-
ons with 100,000 users remain vulnerable. Considering the severe
impact on both developers and users, this prevalence is alarming. In-
terestingly, we find that add-ons vulnerable to the leak of DevPerm
and DepPerm are often maintained frequently by their developers.
Twelve were last modified in 2023, and fourteen were last modified
in 2024. This suggests that DevPerm and DepPerm leakage are wide-
spread, not only in legacy add-ons, but also in actively-maintained
projects. A study on GitHub [41] also observed this phenome-
non. Despite regular maintenance, certain security risks persist
in projects. As illustrated in Figure 5, add-ons with permission leak-
age (green bars) request permissions on key services like Email (165
times), Sheet (130 times) and Drive (56 times). Furthermore, Figure 6
shows that add-ons leaking DevPerm or DepPerm (green bars) tend
to request more permissions than those with code leakage (blue
bars). For example, 13 add-ons request 10 permissions, and one
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add-on requests as many as 13 permissions. These permissions can
be exploited by attackers, compromising the security posture.
Case Study. One add-on, named Sign, with 26,841 users, was found
to leak DevPerm and DepPerm. The permissions already authorized
by user to this add-on are as follows:

1. Connect to an external service.

2. Read, edit, download, and permanently delete your contacts.

3. Display and run third-party web content in prompts and sidebars inside
Google applications.

4. Read, edit, create and delete all your Google Docs documents.

With development and deployment privileges, attackers can
modify the source code without the genuine developer’s awareness
and further deploy the modified malicious add-on into production
environment. From the add-on developer’s perspective: The
attacker can redirect developer-owned external services, such as
the subscription payment interface, to attacker-controlled services,
enabling illicit profit. From the add-on user’s perspective: The
attacker can perform arbitrary actions using the modified add-on,
such as downloading or deleting the victim user’s contacts and
documents.

5.3 Assessment of Leak of Secret

Normal workflow. As shown in Listing 1, in a secure and autho-
rized implementation, the secret key used to access user-specific
data on the service interface should be retrieved dynamically, requir-
ing user authentication (lines 2-3). Even if the secret key is stored
locally to avoid repeated logins, it must be securely stored using
methods such as the workspace-provided APIPropertiesService.
setProperty(), which saves data in the workspace’s cloud storage
tied to the current user ID. This ensures that add-on front-end can
only access the current user’s secret key, preventing attackers from
bypassing protections to retrieve confidential keys of other users.

1 // user login and authorize

» confidential

= login()
PropertiesService.setProperties('key", confidential);
function fetch_token(name) {

// extract the confidential from the save attribute

secret = PropertiesService.getProperity("key")

data = request(url, secret)

console.log(data);

Listing 1: Normal Access

Unauthorized Access and Attacks. Figure 4 illustrates the attack
flow of secret key leakage and the resulting unauthorized access to
service interfaces (upper right part). Based on the code leakage, an
attacker can perform analysis on the leaked code to extract sensi-
tive secret keys. These keys are used to authenticate and validate
the connection to the service interface. This enables the attacker
to exploit these secret keys to access or even manipulate critical
service interfaces essential to the add-on developer. As shown in
the leaked code in Listing 2, the developer hard-codes a secret
key (authorization field in line 6) to access the service interface
hosted by the add-on server. This practice enables unauthorized
users to execute the URL request successfully (line 11) and retrieve
- or even modify - sensitive information, as indicated by the POST
request in line 3.
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Notably, some APIs are explicitly listed in the add-on source code
and expose the secret key. We also found other APIs, not mentioned
in the code, using the same leaked key. For example, we examined
the developer documentation at https://XXXX/api/documentation
and identified additional API calls, like https://XXXX/api/v2/list,
that also use the key (line 6 of Listing 2) for authorization. As prior
studies on GitHub [41, 70] highlight, leaked service details (e.g.,
APIs or database schemas) broaden an attacker’s surface, enabling
further exploitation with the compromised key. This scenario allows
tampering with add-on DevOps service interfaces and threatens
other unrelated interfaces hosted by the same developer.

var options = {

‘url': 'https://XXXX/api/v2/process',
'method': 'post',
‘contentType ': 'application/json',
'headers ': {
'authorization': "Basic " + Utilities.base64Encode('mXXXX@gmail
.com' + ":" + '544c606e286f4XXXXXac4b3359037f04'),
3},
'‘muteHttpExceptions': true,

‘payload': JSON.stringify(data)
};

var request = UrlFetchApp.fetch(options.url, options);

Listing 2: Secret Key Leakage

Dataset. Besides the code collected during the code leakage, we
enhance our dataset by integrating code that developers may have
released on public repository - GitHub. We employ the approach
outlined in a previous study [39] to assist in crawling data from
GitHub. The distinctive file structure of add-on repositories (e.g.,
the essential appsscript.json file) allows accurate identification of
add-on projects on GitHub. We used the GitHub Search API [8]
to retrieve all repositories containing this file. To overcome the
APT’s 1,000-result limit, we partitioned the search by the size of
appsscript.json, ensuring each group within the limit and retriev-
ing all matching repositories. We adopt the established guidelines
proposed by Munaiah et al. [44] to determine whether a reposi-
tory qualifies as an engineered software project. After removing
duplicates, we obtained a total of 1,608 open-source repositories of
add-ons.

Challenges. Existing studies [29, 41] that detect secret key leak-
age primarily rely on already known patterns. As a result, they
are limited to capturing secret keys for popular services, such as
Amazon. In our case, this approach fails due to the diverse and
developer-customized formats of secret keys. An initial approach is
to identify all constant strings in the add-on code. However, our in-
vestigation reveals that not all constants are sensitive. For example,
some constants represent publicly accessible resources, such as a
privacy policy identified by a public ID (1Hvb9QMO...-H-tF7), which
may resemble a secret key but pose no security risk. Therefore,
identifying constant strings alone is insufficient. Understanding
their context and dependencies is crucial to detecting actual secrets.
To accurately detect secret key leakage, we must address two key
challenges: Challenge 1: Identifying entry points for secret key
usage: when the add-on connects to external services requiring
authorization. Challenge 2: Minimizing false positives by recon-
structing the secret key leakage path.

Undocumented web request API(C1). When the add-on projects
access services provided by workspace, the only way is to use official
APIs offered by workspace. However, when accessing the services
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Table 4: Identified web request APIs

Sink # Calls Explanation Hidden

Confirmed Yes

UrlFetchApp.fetch() 232 Recommended API to request X
web resource
OAuth2.createService() 17 A customized library to authen- 4
ticate the user
FirebaseApp.getDatabaseByUrl() 7 A customized library to retrieve 4
and store data on cloud
SpreadsheetApp.openBy* () 18 Some developers use spread- "4
sheet to store users’ confiden-
tials
Confirmed No
CardService.* 144 Create a card, but not the final NA.
destination of web request
HtmlService.createHtmlOutput() 11 Create a HTML page, but not the N.A.
final destination of web request
XmlService.getNamespace() 8 Create a HTML page, but not the N.A.

final destination of web request

provided by add-on back-end, the approach becomes quite diverse.

Although workspace provides the official API for add-on to connect
and communicate with external service interfaces [17]. The add-on

tends to utilize diverse approaches to access these service interfaces.

Based on a manual verification of 50 add-ons, we find that some
add-ons do not use the official API. They tend to utilize many
custom libraries and other undocumented APIs (detailed soon in a
later section) to support the connection. Such undocumented API
usage must be addressed to avoid overlooking AK leaks and false
negatives.

To accurately identify all undocumented web request APIs, we
analyze the add-on code we extracted from code leakage, tracking
all potential sinks to which HTTP requests flow (e.g., HTTP:// or
HTTPS://). We then sort these sinks by the count of appearances
and compile a list of seven APIs as shown in Table 4. Through
manual verification, we identify undocumented APIs that can be

used to initiate web requests. The results are presented in Table 4.

Ultimately, we identify three additional undocumented web request

APIs beyond the recommended official API, UrlFetchApp.fetch().

The other three APIs, although they appear frequently, are not the
final destination of the web request.

Secret key leakage path reconstruction (C2). We use backward
taint analysis (from the taint sink) to capture leaked secret key AK
when a web request occurs. We focus only on paths relevant to
potential security risks, avoiding full input and output tracking,
as well as implicit flow tracking typical of traditional information
flow analysis. Specifically, we begin tracing from the point at which
the web request is initiated, examining whether any secret key
leakage paths can be reconstructed without relying on dynamic
operation, such as user login operation. If we identify a path where
all necessary parameters can be derived directly from the source
code as demonstrated in Listing 2, we designate it as an secret key
leakage path and output it as a candidate for potential leakage. To
support this analysis, we use CodeQL [11], a static analysis tool
developed by GitHub for JavaScript. We define the predefined sinks,
as shown in Table 4, and trace back to potential sources. If we can
trace back to a string constant, we identify it as a potential secret
key leakage path.
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Table 5: Examples of leaked secret keys

Name Identified Leaked Value*
ApiKey 398f9fac-1d64-4abc-8174-058b30XXXXXX
AwsApiKey eyJ0eXAiOiJKVIQILCThbGeiOiFIUZI1fQ.XX-nONBiXXXXXX

ClientSecret
Credential

b4_-B9fBF2zuuY650gXXXXXX
ENBqas6 AmFIsYF9t6 7UEi-WFGTx_iYuaC_2MJ3PXXXXXX

DevToken 0zTAlzi33sZ1RedcmXXXXXX

PrivateKey -BEGIN PRIVATE KEY-MIIG/QXXXXXX-END PRIVATE KEY-
StripeToken sk_live_51KzqeqJKPo7p7uKAhbOzN3Ff00XXXXXX
Secret Pqsuc5fJT52N0tDh387UVGZBIry5xy9KegXXXXXX
UserBaseKey 1SeEDQsxOtmSySANYwOENGpdAkI2-cHOQm7VhUXXXXXX
UserPwd User@isheXXXXXX

‘We masked the actual values to prevent any potential harm to the developers.

Evaluation. Following the practice of existing studies [71], we
randomly select 50 add-ons marked with leakage and 50 add-ons
are not marked with leakage to verify the accuracy of our detection.
No false negatives are found among the 50 add-ons marked with
negative. However, we find two false positive secret keys in the
marked add-ons. Our investigation reveals that the false positives
were used to access publicly available websites, such as stock prices,
rather than secret keys for sensitive service interfaces.

The evaluation result in Table 3 shows that secret key leakage
is prevalent among currently vulnerable add-ons, including some
with over 100,000 installations. In total, 96 add-ons, expose their
secret keys in the add-on source code. Considering the attacker’s
capabilities are further expanded by the usage of secret key, it is crit-
ical for both developers and workspace to take action to strengthen
the security of add-ons. We list some leaked secret keys in Ta-
ble 5. These secret keys cover a broad range, including ClientSecret,
StripeToken, and PrivateKey, none of which should be exposed to
malicious attackers. The exposure is particularly concerning for
leaked StripeToken, as its leakage could lead to financial loss for the
add-on developer.

Additionally, we extract all external web requests from the vul-
nerable add-ons and identify the top 40 requested domain names,
as shown in Table 7. These requests span a wide range of do-
main names, including frequently accessed ones like google.com,
github.com and googleapis.com, which is expected as these services
provide essential communication functions for add-ons. We also
identify requests to more sensitive domain names related to fi-
nance (red text), education (blue text) and Al (purple text) services
as shown in Table 7. Specifically, we observed requests to sensitive
finance-related services like stripe.com 18 times, moex.com (a Rus-
sian financial website) 18 times, paypal.com 13 times. Requests were
also sent to Al-related services, including 18 to dreamstime.com (an
Al-powered image processing tool) and 17 to kontent.ai (an Al-
powered headless content management system).

The most interesting findings arise when applying our tool to
open-source GitHub repositories. Out of 1,608 add-ons analyzed,
613 add-ons could not be parsed by CodeQL. Among the 995 add-ons
successfully parsed, only 40 show instances of secret key leakage.
In contrast to the significant one-third leakage rate found among
add-ons extracted from code leakage, this suggests that secret key
leakage seems less prevalent in the GitHub dataset. However, man-
ual inspection shows that the detected leaked secrets are all masked
placeholders, not actual values, as shown in line 1 of Listing 3. None
of the detected leaks contained real keys. By comparing secret key
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Table 6: Partial records from the customer database retrieved
using the leaked secret of the add-on project

Email License Key Date

andreas. XXXX@gmail.com O0F1ED4D4-XX-BE9D3553 05/05/2022
aloXXXX@cua.uam.mx C111AD36-XX-2BEB2525 05/16/2022
XXXX@digitalmediaacademy.org 32265885-XX-EDFA8BDS5 06/16/2022
jdaXXXX@twilio.com 7D70C174-XX-B589B806 11/14/2022
jonaXXXX@mosney.net 86B82A2C-XX-EB1232D8 02/23/2023
syarzZXXXX@gmail.com 5EDA19A7-XX-55F6DFCC | 04/22/2023
tranXXXX@gmail.com 37C50D4B-XX-E3FDD6C1 09/09/2023
drmcaXXXX@gmail.com FC6CE274-XX-8B9F3D70 11/08/2023
XXXX@dariofinardi.it 99960837-XX-F4761662 12/27/2023
davidsamuXXXX@gmail.com 8CF6CBCD-XX-3DA91680 03/07/2024

We masked the license key and customer email to prevent any misuse of user data.

Table 7: Top 40 requested domain names

Domain Name # Request | Domain Name # Request
google.com 612 googleusercontent.com 22
googleapis.com 251 twitter.com 21
github.com 149 marketscreener.com 21
wikipedia.org 125 cloudfront.net 20
ecma-international.org 123 profit.co 20
mdn.io 63 instagram.com 19
stackoverflow.com 59 stripe.com 18
jsdelivr.net 51 serpapi.com 18
gstatic.com 48 moex.com 18
firebaseio.com 45 classcipe.com 18
momentjs.com 44 dreamstime.com 18
4-traders.com 42 smilebox.com 17
youtube.com 38 cloudfunctions.net 17
supermetrics.com 32 kontent.ai 17
talentsheets.com 30 microsoft.com 16
appspot.com 29 oracle.com 15
githubusercontent.com 28 codecogs.com 14
smartdraw.com 27 nearpod.com 14
apache.org 23 lodash.com 14
techtracker.io 23 paypal.com 13

red text: finance domain blue text: education domain purple text: AI domain

leaks in production add-ons and on GitHub, we find GitHub devel-
opers rarely expose keys, likely due to awareness of public reposi-
tories [29, 36, 37, 41]. In contrast, add-on developers may assume
workspace-managed code is private. Prior studies [23, 27, 54, 55, 57]
show developers trust vendors to securely handle code.

1 const PRIVATE_KEY = '## YOUR PRIVATE KEY ##';
W) QcBo "oo=oo BEGIN PRIVATE KEY----- \NCuY2TNTM1c...@bKG/NvOt\n
————— END PRIVATE KEY-----\n'j;

Listing 3: Example of masked secret key placeholder

Case Study. An add-on named Codes, with 810 users, last modified
on April 1, 2024, is detected with secret key leakage. Specifically, the
developer encoded their secret key (e.g., 1X8QOIbWWIFWzXXXX)
directly in the add-on code to access the customer database. By
reconstructing the secret key leakage path, we were able to retrieve
the full customer database. A small portion of the database informa-
tion is shown in Table 6, with confidential details masked for ethical
considerations. The users of this add-on span a wide range, not
limited to Gmail users. For example, users from domains such as
cua.uam.mx, digitalmediaacademy.org, twilio.com, mosney.net, and
dariofinardi.it have also exposed their confidential information to
malicious attackers.

Even worse, this secret key grants attackers the ability to add
new customers, modify or delete existing ones. In other words, at-
tackers gain admin privileges over the developer’s database through
the leaked secret key. The attacker can compromise these valuable
customers by simply removing them from the database. If the de-
veloper does not maintain a backup or execution history log, the
lost data cannot be recovered.
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5.4 Trend of Exposure and Developer Response

Our evaluation dataset was initially crawled during the code leak-
age phase at the beginning of 2024. To reveal the time trend of
these exposures, we revisited these add-ons at the end of 2024.
Surprisingly, we found that around 23 add-ons are no longer acces-
sible. Of these, 9 add-ons now prompt an access permission request,
displaying an Access Denied message, while 14 add-ons show an
error message, such as Error 404 (Not Found) or Error 500 (Server
Error). This re-visiting suggests that some developers have become
aware of potential vulnerabilities and have restricted access per-
missions to prevent malicious access. However, most developers
remain unaware of the potential leakage and vulnerabilities present
in their add-ons. We then contacted affected developers to disclose
the vulnerabilities, and many confirmed our findings and expressed
concerns about potential abuse. A sample response is shown be-
low: “Hmmm, that’s pretty bad. I didn’t realize that was accessible to
anyone. Please don’t abuse it or share it—I will try to patch it soon!”

6 Discussions
6.1 Limitations

Although we perform automated analysis and detection for vul-
nerabilities in the DevOps of add-on projects, our work still has
some limitations. First, our tool utilizes the existing CodeQL parser
for static code analysis. Like all static analysis tools designed for
standard code, it is unable to parse code that is heavily obfuscated.
Second, our secret key leakage analysis is based on the code leakage
of the add-on project. Thus, we are unable to analyze all add-ons
for which we cannot fetch the source code. Third, we construct the
hidden APIs based on an empirical study, and we apply manual
efforts to identify the potential APIs used for web service requests.
In the future, more diverse APIs may be used by add-on developers
and should be added to the library, but this will require only a one-
time effort. Finally, we focus primarily on detecting leaks from the
developers’ perspective (DevOps) without addressing all possible
attacks that could occur within this ecosystem.

6.2 Lessons Learned and Mitigation

Vetting of add-on. Workspace enforces a strict vetting process [12].
However, vendors do not disclose their vetting criteria for researchers
to evaluate. Although the vendor provides documentation [12] for
add-on developers, these documents do not discuss the potential
issues that developers may face when considering the DevOps of
add-on project. The workspace exposes confidential IDs to end-
users and lacks proper developer verification, resulting in both
code and permission leaks. Thus, even if add-on developers strictly
follow the guidelines, their projects remain vulnerable. While devel-
opers are responsible for the secret key leakage, it remains unclear
how such risky practices pass the vetting process. One possible ex-
planation is that both developers and workspace believe the add-on
projects are protected and cannot be leaked to attackers.

For workspace developer.

Implement stricter permission management: A GitHub-similar
request and approval mechanism can safeguard the development
and deployment of the add-on project. For instance, whenever a
collaborator wants to merge their modifications into the active
version, they should request approval from the project admin, with
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a similar process for deployment. This stricter control over updates
and deployment allows benign developers to quickly identify and
respond to any malicious activity before it impacts the production
environment. Alternatively, the production environment should be
only accessible and managed by the admin.

Support secure authentication: For web service requests, workspace
provides only a basic API, UrlFetchApp.fetch(), which cannot
ensure secure network requests. Many add-on developers just hard-
code their secret keys into URL parameters due to the lack of authen-
tication mechanism supported by workspace. A robust authentica-
tion mechanism for web requests [65, 70], such as OAuth [33] with
dynamic user login, can be implemented. The workspace can utilize
encryption and distribute the secret only to add-on developers for
encrypting data transfers.

Review and inspect the add-on project: The workspace can run
static analysis or security checks before deployment to detect po-
tential leaks. Techniques like suspicious API usage scanning [57]
and secret key tracing [69] can be adapted to detect sensitive data
flows and alert developers before production deployment.

For add-on developer.

Secure service interface interaction: Developers should never em-
bed secret keys in source code. Instead, store secrets in environment
variables or use tools such as AWS Secrets Manager [20] and Google
Secret Manager [31]. For server requests, use standard authenti-
cation methods such as OAuth 2.0 or JWT [22] to ensure secure
access. Additionally, obfuscation tools such as Uglify]S [52] and
ProGuard [32] help protect add-ons.

Identify the source of requests: Developers can verify request

origins by adding add-on-specific metadata, such as a custom header
(e.g., X-App-1ID) or an HMAC token [43, 51]. Servers validate these
to distinguish legitimate from unauthorized requests, with added
protections like rate limiting or timestamp checks [48].
For software engineering researchers. Our work provides a
developer-centered security assessment of the workspace add-on
DevOps lifecycle, complementing prior user-focused studies [34,
42, 61, 68, 70], and highlights the need to strengthen cloud-based
collaborative DevOps models.

Design secure architectures and protocols: Researchers could de-
sign secure architectures that integrate fine-grained, role-based
access control with context-aware policy enforcement [26], dynam-
ically restricting add-on permissions according to the developer’s
role and task. Our findings also suggest new directions for protocol
design, such as incorporating mutual authentication [70] between
developers and workspace services, and defining explicit permission
negotiation protocols to prevent unintended privilege escalations.

Real-time monitoring: Real-time monitoring modules should be
architected to inspect CI/CD pipelines for anomalous behaviours [36],
including unauthorised API calls or suspicious privilege changes [24].

7 Related Work

DevOps security. DevOps security is a critical focus of software
engineering. Prior studies have examined DevOps security in An-
droid [24, 57], ChatGPT [65], and GitHub CI/CD [29, 72] applica-
tions. We provide a comprehensive comparison with existing work
in Table 8. They are all vulnerable to secret key leakage, enabling
unauthorized access. Furthermore, ChatGPT GPTs leak code, while
GitHub Actions leak permissions.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Table 8: Comparison of DevOps security studies

Platform Application Leakage Type

Code Permission Secret Key
Android Mini-programs v
ChatGPT GPTs v v
GitHub CI/CD | Actions v v
Workspace Add-ons v v v

Web App Security. Web security has always been a prominent
topic, particularly with the rise of team collaboration features [53,
56]. Wang et al. [61] systematically revealed unauthorized origin
crossing during communication between web services and mobile
apps, a design flaw that can result in severe impacts, including
hijacking attacks. Hazard [68] analyzed the ecosystem of popular
Team Chat Systems like Slack and discovered vulnerabilities such
as invocation hijacking, message monitoring, and improper permis-
sion isolation. Wan et al. [54] revealed that many vulnerabilities
stem from web resource sharing.

Mini-program Security. The security of mini-programs installed
on Android Super Apps like WeChat [3], Alipay [2], and TikTok [9]
have garnered significant attention in the research community.
Although mini-programs run within Android Super Apps, they
resemble add-ons in the workspace. Zhang et al. [69] were the first
to crawl and analyze the features of WeChat mini-programs on
a large scale. Wang et al. [58, 60] discovered permission inconsis-
tencies between the mobile and desktop versions of Super Apps.
TaintMini[57] used static analysis to build mini-program data flow
graphs, showing that cross-mini-program data flows may leak sensi-
tive data without authentication. WeMinT [42] and AppSecret [70]
both highlighted the widespread issue of secret key leakage in
mini-programs. MiniCAT [71] explored the routing mechanisms
and sharing features of mini-programs, uncovering vulnerabilities
to Cross-Page Request Forgery attacks with severe consequences.
APIScope [59] found that many mini-programs use undocumented
APIs to bypass Android permissions, leading to privilege escalation.

8 Conclusion

The add-on built on workspace introduces new attack surfaces
for both web applications and end-users. We are the first to sys-
tematically uncover the DevOps models of add-ons. Our study
demonstrates that improper permission management designed by
the workspace can lead to severe impacts when exploited by attack-
ers. To assess the prevalence of these vulnerabilities, we developed
a detector that analyzed 5,300 add-ons. Our results show that 274
add-ons are vulnerable to code leakage, while 96 have secret key
leakage. We illustrate the potential consequences of these weak-
nesses through real-world attack case studies, and propose miti-
gations for both workspace providers and add-on developers. We
hope our work helps enhance the ecosystem’s security.
Availability. The source code is available online [16]. Given the
dataset’s sensitivity, and following requests from our ethics com-
mittee and affected developers, we have not released it publicly.
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