
Don’t Bite Off More than You Can Chew: Investigating Excessive
Permission Requests in Trigger-Action Integrations

Liuhuo Wan
University of
Queensland,
Australia

Kailong Wang∗
Huazhong University

of Science and
Technology, China

Kulani Mahadewa
National University

of Singapore,
Singapore

Haoyu Wang
Huazhong University

of Science and
Technology, China

Guangdong Bai∗
University of
Queensland,
Australia

ABSTRACT

Web-based trigger-action platforms (TAP) allow users to integrate
Internet of Things (IoT) systems and online services into trigger-
action integrations (TAIs), facilitating rich automation tasks known
as applets. Despite their benefits, these integrations (typically in-
volving the TAP, trigger, and action service providers) pose sig-
nificant security and privacy challenges, such as mis-triggering
and data leakage. This work investigates cross-entity permission
management within TAIs to address the underlying causes of these
security and privacy issues, emphasizing permission-functionality
consistency to ensure fairness in permission requests. We intro-
duce PFCon, a system that leverages GPT-based language models
for analyzing required and requested permissions, revealing ex-
cessive permission requests in a large-scale study of IFTTT TAP.
Our findings highlight the need for service providers to enforce
permission-functionality consistency, raising awareness of the im-
portance of security and privacy in TAI.

CCS CONCEPTS

• Security and privacy → Web application security; • Net-
works → Network privacy and anonymity.

KEYWORDS

Trigger-action platforms; Third-party services; Excessive permis-
sions
ACM Reference Format:

Liuhuo Wan, Kailong Wang, Kulani Mahadewa, Haoyu Wang, and Guang-
dong Bai. 2024. Don’t Bite Off More than You Can Chew: Investigating Ex-
cessive Permission Requests in Trigger-Action Integrations. In Proceedings
of the ACM Web Conference 2024 (WWW ’24), May 13–17, 2024, Singapore,
Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3589334.3645721

1 INTRODUCTION

Web-based Trigger-Action Platforms (TAP)s, such as IFTTT [2] and
Zapier [5], have revolutionized the integration of IoT systems with
∗Corresponding authors: Kailong Wang (wangkl@hust.edu.cn) and Guangdong
Bai (g.bai@uq.edu.au)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00
https://doi.org/10.1145/3589334.3645721

a myriad of online services (e.g., cloud applications, development
tools, social media, etc.). These platforms enable Trigger-Action
Integrations (TAIs), allowing for if-then style automation tasks (or
applets), such as syncing email attachments to cloud storage with-
out requiring programming skills from users. With IFTTT boasting
20 million users and supporting 75 million applets as of 2023 [8],
the popularity of such platforms is remarkable. However, the con-
venience of TAIs introduces security and privacy vulnerabilities
due to their multi-party nature, making them susceptible to unex-
pected applet chaining, unauthorized actions by attackers, and the
inclusion of sensitive data in triggers [13, 18, 39, 44, 45]. Recent
studies [20, 32, 38] have exposed that many applets do not comply
with data protection laws like the GDPR [1], highlighting the risk
of permanent user data storage by TAP and associated services and
underscoring the pressing need for improved security and privacy
measures in TAI implementations.

Many efforts have been made by the research community to
address these issues, through checking the applet chaining [17,
46], analyzing TAIs [23, 28, 40] and restricting the information
collection and information flow [16, 18, 29]. They mainly focus
on mitigating security and privacy issues arising upon the applet
creation and execution. This unfortunately offers only a partial view
of the security and privacy protection in TAIs, as the fundamental
cause of these issues is the lack of a comprehensive cross-entity
data flow and access control among the services inside the TAI.

The TAP connects participating services mostly through the
OAuth protocol [4]. Upon the connection time, the user is prompted
to grant permissions requested by the TAP on their data and ob-
jects managed by the participating services. They have to either
accept all listed permissions or decline the integration of the ser-
vices. Even though the new OAuth 2.0 protocol [3] replaces such
an all-or-nothing paradigm with a fine-grained permission autho-
rization1, it remains challenging for lay users to make appropriate
selections due to the lack of knowledge on applets’ execution work-
flows. Consequently, most users tend to simply grant all requested
permissions, despite their concerns on the insufficiency of security
and privacy protection provided by the TAP. The core issue in this
permission management is that it is largely in favor of the TAP and
service providers rather than the users, as all behaviors of TAIs can
be claimed to be under the coverage of user authorization.
Our work. In this work, we target the problem of whether the
services in a TAI request and/or expose unnecessary permissions be-
yond the need of their functionalities, particularly, constructing their

1While developers have the option to include tickable choices in their OAuth prompts,
we notice that only four services have actually implemented this particular design.

3106

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/1234-4564-1234-4565
https://doi.org/10.1145/3589334.3645721
https://doi.org/10.1145/3589334.3645721
https://doi.org/10.1145/3589334.3645721
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645721&domain=pdf&date_stamp=2024-05-13

WWW ’24, May 13–17, 2024, Singapore, Singapore Liuhuo Wan, Kailong Wang, Kulani Mahadewa, Haoyu Wang, and Guangdong Bai

triggers and/or executing their actions. We advocate the permission-
functionality consistency, to address the root causes of the applet-
level control and data flow [18, 37] that existing studies mostly
focus on. The permission-functionality consistency is twofold, on
the object level and the operation level respectively. First, when a par-
ticipating service requests to operate on the user’s object managed
by another service provider, the access scope should be limited to
what is necessary in relation to the purposes of the automation task.
For example, the action of “sync the attachment to MyDrive cloud”
needs the access to the attachment only, and that to the email body
is unnecessary. Second, when the TAP requests a service provider
to undertake an operation, it should comply with the principle
of least privilege [35]. For example, the action above requires the
write permission to the user’s cloud folder, but the read or delete
permission is unnecessary.

We propose PFCon, a framework aimes at evaluating TAI for
permission-functionality consistency (or permission excess) by com-
paring required permissions for service functionality against the
permissions requested from users by the TAP. Addressing signifi-
cant challenges, such as custom OAuth authentication processes
by services (Challenge #1), we develop an authentication and au-
thorization engine to automate TAI integration. Additionally, we
utilize advanced large language models (LLMs) for interpreting var-
ied natural language descriptions of functionality and permissions
(Challenge #2), incorporating in-context learning and domain-
specific knowledge. To align differing permission terminologies
across services (Challenge #3), PFCon constructs lattice systems
for a structured context. In our extensive analysis using PFCon
across over 700 services (including Monzo, Amazon Alexa, and
Facebook), we identify a pervasive issue of permission excess in
179 services. Notably, 62 services had excess permissions for sensi-
tive operations (e.g., modifying or deleting user data) and 131 for
accessing privacy-sensitive content.
Contributions. Our key contributions are summarized as follows: 2

• Understanding the permission excess issues in TAIs.
We advocate the principle of permission-functionality consis-
tency in TAIs and characterize the permission excess issues,
when multi-party services are connected through OAuth.

• A systematic assessment approach. We propose PFCon,
which implements a series of techniques to automatically
identify permission excess issues from TAIs.

• Revealing the status quo and findings of permission

excess in real-world TAIs. Our study highlights pressing
issues in permission management in TAIs, with identified
root causes of permission excess. These findings urge users
to be cautious and prompt service providers to redesign their
interfaces for TAI construction.

2 PROBLEM FORMULATION

2.1 Background and a Running Example

The TAP and service providers are typically integrated following
an OAuth procedure, including three phases (Figure 1). We use the
action service (i.e., MyDrive) in the example applet “IF a new email
arrives, THEN sync the attachment to MyDrive cloud” for illustration.

2PFCon is available at: https://github.com/UQ-Trust-Lab/PFCon

User IFTTT Services

Channel
SignUp Phase

Register Client ID,
Secret etc

User
Authorization

Request to Connect
Channel

Request Authorization Code

Request User's Authorization

Exchange Authorization Code
& Access Code

Call Api

Connected

Login & Authorize

1

2

3

4

5

6

7

Figure 1: A general workflow to integrate services into TAP

Phase 1: channel sign-up. IFTTT builds a channel for each service
it supports (detailed soon in this section). The channel is regarded as
an agreement3 on the interfaces that IFTTT can use and the service
provider should implement (step 1○ in Figure 1). Then, IFTTT is
registered as a trusted client, and is assigned a client id.
Phase 2: user authorization. When IFTTT is requested by the
user to integrate a service, e.g., theMyDrive service, it asksMyDrive
to authorize it with the permissions to invoke the APIs defined in
the channel on behalf of the user. MyDrive then requests the user to
log into their account, and displays a permission prompt (Document
2 in Figure 2) that specifies the permissions requested (step 4○ and
5○). The user confirms (“Yes”) or cancels (“No”) the authorization.
Phase 3: applet execution. Once the user grants the permissions,
IFTTT is given an OAuth access token (step 6○). It can use the access
token as a credential to access the user’s account, manipulate objects
or perform actions when the applet is executed (step 7○). Note that
the access code bound with the set of permissions specified in Phase
2 and MyDrive checks its validity each time.
Service functionality artifacts. During the channel sign-up pro-
cess, IFTTT provides the participating service providers with com-
prehensive documents about the interfaces and functionality of
the TAI (e.g., service name, description, and supported APIs), as
partially illustrated in Figure 2. These documents contain sentences
in natural language and formatted or semi-formatted phrases (e.g.,
an API name of “new file in folder”). They describe mainly three
types of APIs supported in IFTTT, i.e., trigger APIs, query APIs
and action APIs. The former two are for triggers (in push model
and pull model respectively), and the latter is for actions. Table 1
lists some example APIs. These documents and descriptions are
service functionality artifacts, and PFCon aims to infer the proper
permissions for each target functionality from them.
Service andApplet. IFTTT utilizes APIs (Document 1 in Figure 2)
from different services to create executable applets. For example,
in the applet “IF a new email arrives, THEN sync the attachment
to MyDrive cloud”, it includes a trigger API, “new_email_arrive”
from the Email Service and an action API, “upload_a_file” from the
MyDrive Service. One service can provide multiple APIs to IFTTT,
enabling the creation of numerous applets. As a result, IFTTT offers
59,009 applets [18] on 700 services.

3This means the interfaces are mutually defined. Due to this, we treat the entire
integration of IFTTT and participating services, i.e., the TAI, as the subject of liability.

3107

https://github.com/UQ-Trust-Lab/PFCon

Don’t Bite Off More than You Can Chew: Investigating Excessive Permission Requests in Trigger-Action Integrations WWW ’24, May 13–17, 2024, Singapore, Singapore

MyDrive integrations

MyDrive is the place to store your files so you can access
them from virtually any device. Use MyDrive and you'll
never be without the documents, notes, photos, and videos
that matter to you.

Trigger:
New file in folder
mydrive.new_file_in_folder
This trigger fires every time a new file is created in the
folder you specify.

Query:
History of files uploaded in folder
mydrive.history_of_files_in_folder
This query returns a list of files created in the folder you
specify.

Action:
Add file from URL
mydrive.upload_file_from_url
This action will download a file at a given URL and add it
to MyDrive at the path you specify.

IFTTT needs your permission to:

View your profile info and contact list
IFTTT will be able to see your profile info, including
your name, gender, display picture, contacts, and
friends.

Access your info anytime
IFTTT will be able to see and update your account,
including your pot balance.

Access your email addresses
IFTTT will be able to see the email addresses in your
profile.

Access your photos and videos
IFTTT will be able to see your photos and videos on
MyDrive, along with their tags and comments.

Access and edit your MyDrive photos and
documents
IFTTT will be able to access, change, and add or delete
your photos and documents on MyDrive.

Service Functionality OAuth Permissions

Figure 2: An example of the IFTTT artifacts

Table 1: Trigger, Query and Action APIs in MyDrive

Category API endpoint slug Parameter Return value

Trigger

new_file_in_folder folder_path name, modified_by

new_photo_in_folder folder_path name, modified_time

Query

history_of_photo folder_path name, modified_time

history_of_files folder_path name, modified_by

Action

append_to_text_file filename, content nil

create_text_file filename, content nil

2.2 Threat Model and Scope

Scope. PFCon targets the permission excess problem of whether
the TAI over-requests functionality-unnecessary permissions. The
core idea of PFCon is to extract the required permissions and
requested permissions from available artifacts, and then check
the inconsistency between them. When a participating service is
asked to provide more permissions than what is needed to fulfil
its functionalities, in terms of executing all its APIs related to trig-
gers/queries/actions, PFCon reports it as a permission excess issue.
Since the interfaces between the participating services and IFTTT
are mutually established, PFCon treats them together, i.e., the TAI,
as the liability subject. We explore the permission excess issue from
both the object level and the operation level.

• Object level. The TAI should comply with limited data re-
striction. In our running example, the action of “sync the
attachment to cloud” needs the access to attachment only,
rather than the email body.

• Operation level. When the TAI undertakes an operation
on an object, it should execute the least privilege. In our
running example, the action requires the write permission
to the cloud folder, but not the read or delete permission.

It is worth noting that PFCon focuses on service-level permis-
sion management, in contrast to previous studies [9, 14, 18, 19, 23,
32, 37, 44, 46] that analyze privacy and security concerns arising
with the creation and execution of individual applets.

2.3 Permission Excess Definitions

Definition 1 [Permission]. Each permission is defined as a pair
𝑃 = (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝑂𝑏 𝑗𝑒𝑐𝑡), denoted by (OP, OB), meaning entity with
𝑃 possesses the right to perform the 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 on the 𝑂𝑏 𝑗𝑒𝑐𝑡 .

Pair
Extraction

OAuth
Artifacts

Functionality
Artifacts

Lattice
Construction

Detection

Lattice System

Permission
Excess

Sentence Required Permission Excessive Permission

GPT

Figure 3: Overall workflow of PFCon

Definition 2 [Permission excess]. We use S to indicate the set
of the requested permissions and R the set of required permissions
for the correct functionality of the service, where S is derived from
the OAuth authorization requests (e.g., Document 2 in Figure 2),
and R is derived from service functionality artifacts (e.g., Table 1
and Document 1 in Figure 2 demonstrating part of the artifacts).
A permission excess occurs when any permission requested is not
required, formally described as follows: ∃𝑃, 𝑃 ∈ 𝑆 ∧ 𝑃 ∉ 𝑅.

3 OUR APPROACH

3.1 Overview of PFCon

PFCon consists of three main components, i.e., artifact collection,
permission recognition and permission excess detection, as shown in
Figure 3. Below we brief each of them.
Artifact collection. This component aims to collect data for infer-
ring (OP, OB) pairs in S and R. The data needed by PFCon includes
the OAuth authorization page (for S) and the functionality arti-
facts (for R). The challenge to automate the authentication process
to obtain the authorization page (i.e., Challenge #1). This compo-
nent is detailed in Section 3.2.
Permission recognition. This component aims to recognize the
(OP, OB) pairs from the collected artifacts and derive the permissions
inS andR. It has to interpret the artifacts that are written in natural
language, with varying format and quality (i.e., Challenge #2). This
component is detailed in Section 3.3.
Permission excess detection. This component checks the per-
mission inconsistency between S and R. The challenge lies in the
diversity and context-sensitivity of the terminologies in (OP, OB)
pairs (i.e., Challenge #3). For example, subsumptive relationships
are present among service-level objects and operations. It is crucial
to address self-defined structures like “money pot ≺ user account”
in online banking appropriately by considering the context. This
component is detailed in Section 3.4.

3.2 Artifact Collection

PFCon collects two types of artifacts, i.e., functionality artifacts (for
deriving R) and authorization pages (for deriving S), as illustrated
in Figure 2. First, PFCon crawls the developer site of IFTTT for func-
tionality artifacts. The developer site, revealed by the advanced TAI
analyzer Taifu [32] through reverse engineering, offers web APIs4
with detailed data on functionality, usage, and user metrics (e.g., in-
stallation). As it takes service names as inputs, PFCon fetches a full
list of participating services supported by IFTTT and passes their
names to the web APIs to get all artifacts related to each service.

Obtaining the authorization page turns out to be challenging,
given that service providers tend to implement the authentication
4https://ifttt.com/api/v3/graph

3108

WWW ’24, May 13–17, 2024, Singapore, Singapore Liuhuo Wan, Kailong Wang, Kulani Mahadewa, Haoyu Wang, and Guangdong Bai

process in diverse ways with various UI items. To obtain the autho-
rization pages that only appear during authorization, PFCon has
to automate the connection between different services and IFTTT,
which includes authentication (via user credentials) and authoriza-
tion (via prompted windows) of OAuth. This entails a substantial
amount of technical efforts (details can be referenced in Appen-
dix A.1). PFCon filters out two types of services, i.e., non-English
services (merely 4.8% of the entire corpus, 34 services) and services
that do not require OAuth authorizations (239 services).

3.3 Permission Extraction

With the crawled artifacts, PFCon can proceed to construct the
(OP, OB) pairs in S and R. The challenge arising is that the artifacts
are written in natural language, with varying format, terms and
quality used among service providers. To address this, we resort
to the large language models (LLMs) for interpreting the artifacts,
considering that LLMs are capable of assimilating correct syntax
and semantics due to their intricate model architecture and exten-
sive training data. We adopt the state-of-the-art GTP-4 model [15],
and design a set of prompt patterns for it, as listed in Table 2. To
further guide it with domain knowledge, we conduct an in-context
learning [31] with the Chain of Thoughts (CoT) mode [42] applied.

We disintegrate the permission extraction task into two small
tasks to for the precision of the LLM, including sentence separation
and (OP, OB) extraction. The former breaks down complex sentences
into a series of simpler sentences that contain (OP, OB) pairs. The
prompt pattern and the example is shown in the sentence separation
row in Table 2. Given a complex sentence in the crawled artifacts,
e.g., “access, change, and add or delete your photos and documents”,
PFCon requests the LLM to “assist me in breaking down the following
complex sentence into a series of simpler sentences”. CoT prompts
are provided to guide the LLM through the reasoning process. For
example, “This sentence involves four operations—access, change, add,
and delete—on two objects: photos and documents. Therefore, the
total number of resulting sentences should be 4 * 2 = 8”. Employing
a similar approach, PFCon further extracts the representation of
(OP, OB) pairs from the obtained simple sentences utilizing the LLM,
as shown in the (OP, OB) extraction in Table 2.

3.4 Permission Excess Detection

Based on the extracted (OP, OB) pairs inS andR, PFCon detects per-
mission excess issues. Rather than simply comparing the operations
and objects, it constructs the permission hierarchy (Section 3.4.1)
to enable fine-grained and service context-aware checking, and the
detects permission excess based on it (Section 3.4.2).

3.4.1 Constructing Permission Lattice Systems. Similar to other sys-
tems like mobile OSes [21, 34], most participating services also have
a complex permission system. This often leads to a hierarchical
structure among the permissions. For example, “see your photos
(including contents, comments, etc.)” contains higher privilege than
“see comments of your photos”. To preserve such hierarchical struc-
tures for the permission excess checking, we propose the lattice
system representation similar to prior studies [24, 38] to facilitate
the permission excess checking. PFCon builds two permission lat-
tice systems for each service, i.e., object lattice and operation lattice.
Before diving into details, we show the constructed lattice systems

tag

Requested
Permissions

Required
Permissions photo

file name path modified time comment

photo

Operation
Lattice

change add delete

access

seesee

edit

Object
Latticetagged time

Figure 4: Permission lattice system of the running example

of our running example in Figure 4. As shown in the figure, IFTTT
requests the permission (upper right) to access the “photo” and
its “comments”, whereas the permission required (upper left) only
includes metadata (i.e., name, folder path, modified time) of the
“photo” object. PFCon considers “comments” as an object permis-
sion excess. Similarly, according to the operation lattice system in
Figure 4, IFTTT requests the permission (lower right) to perform
“change”, “add”, and “delete” operations over a photo object under
“edit”. However, the required permission (lower left) only includes
the access to “see” the photo. PFCon considers this as an operation
permission excess.

PFCon mainly relies on sentence-level lexicosyntatic patterns
and applet data structures to determine the subsumptive relation-
ship between two terms. Below we discuss them.
Lattice of R (objects/operations). We leverage the hierarchical
relationships within the API structures, as employed by IFTTT
for TAI construction (illustrated in Table 1), to develop lattices for
both objects and operations. When an object/operation is identified
from a field, other objects/operations identified from its subfields
are considered as subsumed, denoted by ≺ (or ⪯ if the two may
also refer to the same). Take the API “new_photo_in_folder” in
Table 1 as an example. It contains parameters (e.g., “folder path”)
and return values (e.g., “name” and “modified time”). We construct
the object lattice (upper left of Figure 4) and specify “folder path”,
“name” and “modified time” as the objects that belong to the object
“photo”. For operation lattice system under the object of “photo”,
since “photo” appears in a trigger as “new_photo_in_folder” and a
query as “history_of_photo”, and no action (shown in Table 1), we
can construct the operation lattice that only consists of “see” (lower
left of Figure 4).
Lattice of S (objects). We use lexicosyntatic patterns that are
proposed by PolicyLint [10] to capture the subsumptive relationship
in a sentence. These patterns define the relationship before and after
keywords like “such as”, “e.g.|i.e.”, “for example” and “include”. For
example, from the sentence “IFTTT would see your photos, along with
their comments”, “comments” is found to be one attribute of “photos”.
Therefore, we can derive that comments ⪯ photos (see upper right
of Figure 4). We expand the patterns of PolicyLint with additional
keywords to enhance its accuracy, as shown in Appendix A.2.
Lattice of S (operations). We use the inner HTML hierarchical
structures (i.e., layered titles and subtitles) from the OAuth au-
thorization pages to construct this lattice. Intuitively, we utilize
operations from the lower layers of the hierarchical structure as

3109

Don’t Bite Off More than You Can Chew: Investigating Excessive Permission Requests in Trigger-Action Integrations WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 2: Prompt patterns and tutorials used for four tasks of PFCon

Id Task Prompt pattern Input

Permission extraction: sentence separation

1

Tutorial Break down a complex sentence
<Complex_Sentence> into a series of
<Simpler_Sentences> , each comprising
only one operation and one object. The
simple sentence contains no conjunctions.
<Chain_of_Thought>

IFTTT will be able to access, change, and add or delete your photos and documents on MyDrive.

access your photos; change your photos; access your documents; change your documents; add to your photos; delete your
photos; add to your documents; delete your documents.

This sentence contains four operations: access, change, add, and delete on two objects: photos and documents. So the total
number of result sentences should be 4 * 2 = 8, as follows:

Actual task Assist me in breaking down the following <Artifacts_Sentence> into a series of simple sentences, each comprising only one operation and one object. The simple sentence should
contain no conjunctions.

Permission extraction: (OP, OB) extraction

2

Tutorial The sentence <Sentence> contains an
Operation-Object pair <Operation, Object> .

Access your photos.

Operation: Access
Object: your photos.

Actual task Get the Operation-Object pair from the following sentence <Artifacts_Sentence> .
Object-level detection

3

Tutorial <Context> . Is the permission <Permission> re-
quired by <Service_API> based on the object
hierarchy <Service_Lattice_System> ?
<Chain_of_Thought>

So, the answer is Yes.

Under the context of ‘MyDrive’, the general description of the service function is ‘MyDrive’ is the place to store your files so
you can access them from virtually any device. Use MyDrive and you’ll never be without the documents, notes, photos, and
videos that matter to you.’

Does MyDrive API that can access the object ‘pot balance’ require the permission to access the object ‘account’
Lattice System: pot balance ≺ account

Within the lattice system, the relationship hierarchy is as follows: pot balance ≺ account. As a result, there is a subsumptive
relationship between ‘pot balance’ and ‘account’. We conclude that access to the pot balance requires permission to access the
account.

Actual task <Context> . Is the permission <Permission> required by <Service_API> based on the object hierachy <Service_Lattice_System> ?
Operational-level checking

4

Tutorial <Context> . Is the permission <Permission> re-
quired by <Service_API> based on the opera-
tion hierarchy <Service_Lattice_System> ?
<Chain_of_Thought>

So, the answer is No.

Under the context of ‘MyDrive’. the general description of the service function is ‘MyDrive is the place to store your files so you
can access them from virtually any device. Use MyDrive and you’ll never be without the documents, notes, photos, and videos
that matter to you.’

Is permission to ‘update your account’ required by MyDrive API that can perform the action ‘see your pot balance’
Lattice System: object pot balance ≺ account, the operation on object account: see ≺ unknown, update ≺ unknown

In the context of the lattice system, it is established that the object pot balance is subordinate to account, denoted as ≺ (pot
balance ≺ account). Consequently, when one seeks authorization to ‘see your pot balance,’ it necessitates permission to ‘see
your account.’ For operations ‘see’ and ‘update’ belong to distinct parallel hierarchies, with no inherent subsumptive connection
between them. Consequently, the permission ‘update your account’ is not mandated for an API capable of executing the ‘see
your account’ action. As a result, it can be deduced that the permission ‘update your account’ is similarly not obligatory for an
API authorized to perform the ‘see your pot balance’ action.

Actual task <Context> . Is the permission <Permission> required by <Service_API> based on the operation hierarchy <Service_Lattice_System> ?

explanations for those from the upper layers. For example, “change”,
“add” and “delete” are further explanations of the operation “access
and edit” in the layer above. Figure 4 (lower right) shows the ex-
tracted permissions from the OAuth prompt shown in Document
2 in Figure 2). Such layer relationship can be reflected by HTML
tags (e.g., <ℎ>). We recursively perform such explanation steps until
all the layers of permissions have been covered in the prompted
OAuth page. We assign the symbol ⊥ (as shown in Figure 4) to rep-
resent the unknown relationship between permissions (e.g., “edit”
and “access”) and to mark the end of the lattice construction.

3.4.2 Detecting Excessive Permissions. Based on the lattices, PFCon
can check the consistency between the (OP, OB) pairs, for object and
operation fields separately. The main challenge lies in determining
whether two objects or operations refer to the same entity, as the
service providers may use different terminologies. To overcome this,
we utilize an LLM to assess the semantic similarity of these terms, as
LLMs can effectively capture language synonyms and hierarchical
relationships in the constructed lattice (shown in Table 2).
Object-level checking. PFCon checks the object fields of the
(OP, OB) pairs in S and R. Intuitively, it checks whether the object
in one ofS.(OP, OB) pairs is contained in the object of anyR.(OP, OB),
i.e., ∃(OP, OB) ∈ R such thatS.OB ⪯ R.OB. PFCon augments the LLM
with context to enhance semantic understanding of the terms. We

use the general service description provided for IFTTT, accessi-
ble in the functionality artifacts, as the context. Additionally, we
integrate the hierarchical relations from the lattice system knowl-
edge to construct the “reasoning” for the CoT, enabling the LLM
to grasp subsumptive relationships and assess similarity based on
this knowledge. PFCon traverses the object lattice from S. For each
object, it queries the LLM with the prompt listed in the object-level
checking row in Table 2. When the LLM finds a semantically iden-
tical object (indicated by GPT-4 responding ‘Yes’), the object is
marked as “required”.
Operation-level checking. When the object are marked as re-
quired by previous Object-level checking: S.OB ⪯ R.OB, PFCon
proceeds to check the operation fields. It checks whether S.OP has a
lower or equal privilege level compared to the OP that has the high-
est level in R (denoted by R.OPℎ), i.e., S.OP ⪯ R.OPℎ (equivalent to
∃ (OP, OB) ∈ R such that S. OP ⪯ R. OP.) PFCon addresses semantic
similarity between (OP, OB) by adopting an approach akin to object-
level checking, utilizing prompt queries from the operation-level
checking section in Table 2.

4 EVALUATION

Aligning with previous study [9, 18, 19, 23, 32, 44], we implement
PFCon and evaluate its performance in IFTTT. In our evaluation,
we aim to answer the following research questions (RQs).

3110

WWW ’24, May 13–17, 2024, Singapore, Singapore Liuhuo Wan, Kailong Wang, Kulani Mahadewa, Haoyu Wang, and Guangdong Bai

Table 3: Permission excess overview

Permission excess 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17

Services 56 35 25 28 5 5 1 4 4 3 3 5 1 2 2

2 4 6 8 10 12
Permission excess number

0

10

20

30

40

50

60

Se
rv

ic
e

nu
m

be
r

Object-level excess
Operation-level excess

Figure 5: Permission excess of service

RQ1. What are the characteristics and prevalence of the permission
excess issues in the real-world TAP?
RQ2. How effective and accurate is PFCon in detecting permission
excess issues?
RQ3. What are the root causes (RCs) of permission excess issues?

4.1 Dataset

We crawl the IFTTT website to collect the evaluation dataset, as
described in Section 3.2. Out of the over 700 services supported on
IFTTT, we eventually obtain 427 for analysis, excluding no-English
services, services that require no OAuth authorization (e.g., public
news websites). We find that the services have significantly diverse
numbers of permission sentences. Among them, 48.6% have only
one or two permission sentences, 21.4% have three to four, 22.3%
have five to ten, and only 7.7% have more than ten.
Ethical considerations.We anonymize all the services included
in our dataset, and refer to them as anonymous 4-digits in the sub-
sequent analyses unless stated otherwise. We have conscientiously
communicated our findings to IFTTT. They have acknowledged the
insights provided and are actively developing strategies to mitigate
potential adverse effects.

4.2 RQ1: Permission Excess Landscape

4.2.1 Permission Excess Prevalence. We present an overview of
the permission excess issues detected by PFCon in Table 3. Out
of the 427 services, we find an astonishing 179 (41.9%) of them
have permission excess issues. Among the services with violations,
most (144) have one to four excessive permissions, while 13 services
have over ten excessive permissions.
Permission excess prevalence by types. Figure 5 shows 131
services have at least one object-level excessive permission, and
122 services have at least one operation-level excessive permission.
Permission excess distribution. From Table 4, we find that per-
mission excess issues are more prevalent among services with fewer
installations, as their developers might enforce less stringent checks
for permission functionality consistency. We further investigate
the root causes of such excessive permissions in RQ3 (Section 4.4).

Table 4: User installation distribution for services with per-

mission excess

User installation 0-100 100-500 500-1k 1k-5k 5k+
Service number 76 29 17 13 44

Table 5: Features of permission excess: Top-5 opera-

tion/object detected as excessive.

Operation name manage modify remove create write
Exceeded time 93 84 52 29 15

Object name profile setting event notice country
Exceeded time 15 8 8 7 7

4.2.2 Characteristics of Permission Excess. We further analyze per-
mission features contributing to excess permissions, offering in-
sights for developers to mitigate similar issues. Our study identifies
both object and operation-level features, with the top five detailed
in Table 5.
Features of object-level excess. Our findings indicate that the
most commonly violated permissions pertain to profile information.
Such excess permissions could potentially result in unauthorized
access to sensitive user data, including contact information. In
general, for individual users, highly personal objects are prone to be
abused, such as videos, documents, tasks, messages, calendars, and
contacts. Their unauthorized access and manipulation could incur
significant privacy damage. For industry users, highly valuable
objects are the primary targets, such as configuration, enterprise,
message, voice command, subscription and product. Some objects,
such as configuration and voice commands, may impact the physical
devices and environments due to the involved smart home devices,
hence also posing a safety risk.
Features of operation-level excess. Generally, the most sen-
sitive and dangerous operations include the modify/change and
remove/delete operations since the user may lose data completely
upon unauthorized execution. Our detection results also show that
these operations are the most prevalent among the exceeded per-
missions. Specifically, the modify operation has 84 excessive oc-
currences, and remove/delete has 52 occurrences. However, these
operations are only available in certain service categories like on-
line editors (e.g., Google Sheets/Docs, and OneDrive) as shown in
Figure 6. For example, the most prevalent excessive operation man-
age (93 excessive occurrences) is majorly present in the category of
industry IoT (e.g., smart agriculture and company camera system).
PFCon further identifies that the most permission excess reported
are under these two categories, i.e., online editors and industry IoT.

4.3 RQ2: Performance Evaluation

In this RQ, we first present the overall detection accuracy, and
then further investigate the step-wise accuracy of PFCon with the
discussion on plausible causes for detection failure.

4.3.1 Overall Accuracy. We first construct a benchmark dataset,
and evaluate PFCon using it.
Benchmark dataset assembly. Since there is no existing bench-
mark dataset to evaluate the accuracy of PFCon, we resort to man-
ual effort to construct a suitable one. We first divide the dataset into
four groups based on the number of permission sentences extracted

3111

Don’t Bite Off More than You Can Chew: Investigating Excessive Permission Requests in Trigger-Action Integrations WWW ’24, May 13–17, 2024, Singapore, Singapore

Blogger

Industry IoT

Smart Camera

Social Media
Reminder

Safety Alarm

Online Editor

Add
Automate

Change
Control
Create

Disable
Discover

Distribute
Enable

Execute
Identify
Interact

List
Make

Manage
Modify

Organize
Participate

Play
Put

Read
Remove/Delete

Replace
Retrieve
Revoke

Send
Share

Stop
Submit
Upload

Write

0 5 0 4 0 0 3
0 2 0 0 0 0 0
2 5 1 0 0 1 1
0 3 1 0 0 0 0
0 5 4 3 3 0 14
0 2 0 0 0 0 0
0 0 0 3 0 0 0
0 3 1 3 0 0 5
0 1 0 0 0 8 0
0 0 0 0 0 0 2
0 8 0 0 0 0 0
0 4 0 0 0 0 0
0 2 0 0 0 1 0
0 4 0 0 0 1 1
8 73 0 8 0 0 1
6 14 4 10 9 1 34
0 0 0 0 4 0 5
0 3 0 0 0 0 0
0 2 0 0 0 0 0
0 3 0 0 0 0 0
0 2 1 0 0 0 0
3 5 2 7 7 0 26
0 0 0 2 0 0 0
0 7 0 0 0 0 2
0 3 0 0 0 0 0
1 0 0 1 0 2 0
0 0 0 3 0 0 6
0 1 0 0 0 0 5
3 0 0 0 0 0 0
0 0 0 1 0 0 4
0 2 0 3 5 0 3

0

10

20

30

40

50

60

70

Figure 6: Permission excess distribution among categories

from a service: group 1 with one to two permissions; group 2 with
three to four; group 3 with five to nine; group 4 with ten or more.
Then, we randomly and proportionally select 15% (i.e., 64 out of
427) of the services [43] from our dataset to form the benchmark
dataset that can evenly reflect the permission distribution across
our dataset, including 30 from group 1, 15 from group 2, 15 from
group 3, and 4 from group 4.
Ground truth construction. To construct the ground truth, we
recruit three volunteers (one PhD and two master students) that
major in computer science. To avoid personal bias of excessive
permission perceptions [12, 22, 25], we create explicit labeling in-
structions that explain the task and provide some corner cases. We
give the volunteers a detailed and objective tutorial with several
case studies. To prevent any possible bias caused in this process,
they are not asked to generate S or R representations. Instead, they
look through each sentence in the OAuth page (e.g. Document 2
of Figure 2), check whether it is needed by referring to descriptions
(e.g., Document 1 of Figure 2), and annotate unnecessary (OP, OB)
pairs, e.g., (delete, files). The inter-annotator agreement quality
measurement using Krippendorff’s Alpha [30] achieves 0.823 and
an alpha of 0.80 or higher indicates a good correlation between
annotators [7]. To handle the disagreement, a security expert with
8 years (since 2015) experience is invited to discuss and verdict on
the final label.
Results. Table 6 summarizes the performance of PFCon, on service-
level (Table 6a) and object/operation-level (Table 6b). It achieves
the True Positive Rate (TPR) of 100% and True Negative Rate (TNR)
of 93.6% with only three false positives (FP). The detailed results for
each service are available in Appendix A.3. We will further discuss
the possible cause in Section 4.3.3. PFCon also exhibits a great
capability to capture the permission excess issues, with a recall of
nearly 1. Even with a few false positives, PFCon remains highly
effective as privacy analysts can easily confirm the results and rule
them out. In particular, we find 17 (26%) out of the 64 benchmark
services have permission excess issues. Three services have ten or
more permission excess.

Table 6: PFCon accuracy

(a) Service-level performance

Label Detector FP TP FN TN TPR TNR

POS 17 20 3 17 0 44 100% 93.6%
NEG 47 44

POS (S − R ≠ ∅): permission excess, NEG (S − R = ∅): Non permission excess (see Definition 3).

(b) Object/Operation-level performance

Label Detector Label ∩ Detector Coverage

Object 32 40 32 100%
Operation 46 69 43 93.5%

Coverage = (Label ∩ Detector) / Label

(c) PFCon stage accuracy

Accuracy P1 P2 P3 P4

Plain 40% N/A 65% 85%

Context 75% N/A 75% 90%

Context + CoT 95% N/A 95% 100%

Overall 94% 100% 96% 94%
P1: Prompt for task 1, P2: Prompt for task 2, P3: Prompt for task 3, P4: Prompt for task 4

4.3.2 Stage-wise Accuracy. Our methodology, primarily based on
NLP tasks, ensures PFCon’s reliability through accuracy verifica-
tion at each analysis stage, detailed in Table 6(c).

We compare three prompt patterns - plain, context information,
and context information enhanced by CoT - using a small dataset.
For task 2 in Table 2, we employ plain prompts without context
and CoT, as GPT-4 can easily extract (OP, OB) pairs from simple sen-
tences. With 20 queries per task, we manually evaluate the results.
The context information + CoT prompt consistently performs the
best. In task 3, GPT-4 effectively handle self-defined structures with
Lattice System and CoT. For example, when working with service
3828, it understood and used service-specific structures, like “pot
balance ≺ account”, successfully captured by the lattice system.

Following validation on a small dataset, we proceed to evaluate
on all services in our dataset, assessing stage-wise accuracy (last
row of Table 6c). For each task, we employed a random selection and
meticulous screening of 100 queries. PFCon consistently achieved
high accuracy across all stages as shown in Table 6c.

4.3.3 Case Analysis. We investigate the false positive and permis-
sion level miss detection (see Appendix A.4 for more details).
Permission-level missed detection. The reason for missing the
excessive permissions in the service 2999, 6516 and 9650 arises
from the difficulty in capturing the folder structure defined by
the services. The service 9650 has a self-defined folder structure:
workspace ⊇ board ⊇ lists ⊇ card. Unfortunately, neither the S nor
the R information provides any insights into this hierarchy. Conse-
quently, our lattice system is unable to capture and construct this
structure accordingly. The only action (i.e., “Create a card”) requires
updating an existing board, and the permission to create boards
is thus excessive. PFCon misses detecting this permission since
GPT-4 considers board and card are semantically similar. Service
2999 and 6516 have a similar issue.

4.4 RQ3: Root Causes for Permission Excess

After revealing that around one-third of the services request exces-
sive permissions, we further investigate their root causes to obtain

3112

WWW ’24, May 13–17, 2024, Singapore, Singapore Liuhuo Wan, Kailong Wang, Kulani Mahadewa, Haoyu Wang, and Guangdong Bai

an in-depth view of such issues. We randomly select and manually
check 50 (out of 179) services with excessive permissions. Besides
19 services with unidentifiable causes, we group the rest 31 into
the following four categories.
RC1: Permission bundle (9 services). When similar permissions
are grouped into bundles, there is an increased risk of permission
excess. More specifically, IFTTT has to apply for the whole group
of permissions even if only part of them are required. This RC
is the major cause for permission excess in popular services like
4682 (5.3k installation), 6750 (23.8k), and 0032 (114.k). After con-
sulting IFTTT and service developers, they have confirmed this as
a plausible cause for potential permission excess. Based on their
types, permission bundle can be further divided into two categories:
bundle in operation and bundle in object. For example, opera-
tions such as “access”, “change”, “add” and “delete” are commonly
bundled, and objects such as “photos” and “videos” are typically
bundled. We provide concrete case studies in Appendix A.4 for
detailed reference.
RC2: Defect Permission System Implementation (9 services).
When developers lack a thorough understanding of a service’s func-
tionality and the nuances of privacy protection, there is a height-
ened risk of implementing excessive or even irrelevant permission
requests. For example, a financial service 3828 (21.9k installation)
implements a dangerous permission “Freeze and unfreeze your
card” (highly sensitive operation) through IFTTT which is neither
required nor necessary for its functionality.
RC3: Ambiguous Permissions (8 services). When permission
requests are ambiguously formulated, they can create disparities in
downstream user understanding and perception. This lack of clarity
may lead to more permissions requested than actually necessary for
the service functionality, compared to the user interpretation of the
request. For example, service 6460 (working together with IoT de-
vices), has permission requests like “control your other smart home
devices” which is ambiguous and vague compared with specific
permissions (“turn on/off your devices”).
RC4: Template Usage (5 services). Different services belonging to
the same company may share the same template or similar permis-
sion management patterns without considering the usage-specific
scenarios. This could consequently introduce inaccurate and ex-
cessive permissions requested. For example, all services (including
cleaning robots, coffee machines, dishwashers, dryers, etc.) under
the same electronic company H (full name anonymized) share one
OAuth template, without considering the customized and detailed
service usage scenarios. This issue also exists among famous service
providers like 6750 (23.8k installation).

5 THREATS TO VALIDITY

Despite the effectiveness of PFCon, it still carries several limitations
that future work could target to address. PFCon faces inherent NLP
limitations, such as language ambiguity, making it challenging to
precisely interpret permissions like “control your devices” which
could entail a range of operations from toggling smart lights to
modifying device configurations. Additionally, PFCon may gen-
erate false positives and negatives, suggesting its findings should
serve as preliminary guidance for further investigation by users
and developers.

6 RELATEDWORK

PFCon is related to the privacy and security of IoT integration. In
this section, we summarize existing studies related to them. We
present a brief comparison between PFCon and other previous
work on TAP in Appendix A.5.
Privacy/Security in the trigger-action service. Bastys et al. [13]
identify the security issues inherent in the TAP and provide miti-
gations. Fernandes et al. [23] provide a protection mechanism to
safeguard the applet execution. Chen et al. [18, 19] design the data
minimization to reduce the data attributes transferred to the IFTTT.
In terms of the privacy and security analysis, PFCon confirms the
privacy/security existence [14, 36] in TAP and complements these
studies with the study of permission-level excess.
Automatic testing of IoT integration. HomeScan [14, 33] pro-
poses a model-checking tool for smart homes and verifies safety and
security properties. AutoTap [44] and AutomatedLTL [46] provides
a checking method based on the LTL formula to detect security vio-
lation in applets and provide suggestion for users. TAIFU [32] tests
trigger-action service like IFTTT and finds many violations against
GDPR. PFCon’s approach of auto-connecting services is inspired
by them. In summary, most existing work focuses on applet-level
testing, while PFCon targets the service-level permission analysis.
NLPbased security scrutinizing. PolicyLint [10] utilizes sentence-
level NLP technique to analyze data collection and sharing in pri-
vacy policies, identifying nine types of semantic contradictions.
However, it cannot compare stated privacy claims with actual be-
havior. PoliCheck [11] applies PolicyLint and AppCensus [6] to
detect the inconsistency for Android apps but requires available
source code. GUILeak [41] uses annotated dataset and share similar
ideas with PoliCheck. All of the current research work [26, 27]
cannot handle platforms like TAI whose permission is not unified.
In general, PFCon targets permission excess detection with various
permission eco-systems and limited text corpus. PFCon can achieve
good performance even without source code and user behavior or
logging analysis.

7 CONCLUSION

In this work, we developed PFCon to examine permission function-
ality consistency among implementations of TAI’s services. PFCon
is capable of first extracting the required permissions according
to the functional capabilities provided by a TAI service. It then
subsequently performs a consistency check to ensure that only the
necessary permissions are requested during the service runtime.
Through our systematic evaluation, we have identified nearly a
third of the IFTTT services have been requesting excessive permis-
sions, marking the alarming importance of responsibly enforcing
the principle of least privilege in practice. We note that PFCon is an
initial exploration in this field, and we advocate for future research
to tackle the challenges identified in our study.

ACKNOWLEDGEMENT

We would like to thank anonymous reviewers for improving this
manuscript. This research has been partially supported by the
Australian Research Council Discovery Projects (DP230101196,
DP240103068) and the National Natural Science Foundation of
China (grant No.62302176).

3113

Don’t Bite Off More than You Can Chew: Investigating Excessive Permission Requests in Trigger-Action Integrations WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES

[1] 2022. General Data Protection Regulation . https://gdpr-info.eu/. Online;
Accessed: 2022-08-01.

[2] 2022. IFTTT homepage. https://ifttt.com/. Online; Accessed: 2022-08-01.
[3] 2022. OAuth 2.0 Rich Authorization Requests . https://datatracker.ietf.org/doc/

html/draft-ietf-oauth-rar-12. Online; Accessed: 2022-08-01.
[4] 2022. OAuth protocol. https://oauth.net/. Online; Accessed: 2022-08-01.
[5] 2022. Zapier homepage. https://zapier.com/. Online; Accessed: 2022-08-01.
[6] 2023. AppSensusHomepage. https://www.appcensus.io/search. Online; Accessed:

2023-01-15.
[7] 2023. De Swert K. Calculating inter-coder reliability in media content analysis

using Krippendorff’s Alpha. http://www.polcomm.org/wp-content/uploads/
ICR01022012.pdf. Online; Accessed: 2023-04-27.

[8] 2023. IFTTT Statistics and Facts. https://expandedramblings.com/index.php/ifttt-
statistics-and-facts/. Online; Accessed: 2023-02-10.

[9] Mohammad M Ahmadpanah, Daniel Hedin, and Andrei Sabelfeld. 2023. LazyTAP:
On-Demand Data Minimization for Trigger-Action Applications. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 3079–3097.

[10] Benjamin Andow, Samin YaseerMahmud,WenyuWang, JustinWhitaker,William
Enck, Bradley Reaves, Kapil Singh, and Tao Xie. 2019. PolicyLint: Investigating
Internal Privacy Policy Contradictions on Google Play. In 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 585–602.
https://www.usenix.org/conference/usenixsecurity19/presentation/andow

[11] Benjamin Andow, Samin Yaseer Mahmud, JustinWhitaker, William Enck, Bradley
Reaves, Kapil Singh, and Serge Egelman. 2020. Actions speak louder than
words:{Entity-Sensitive} privacy policy and data flow analysis with {PoliCheck}.
In 29th USENIX Security Symposium (USENIX Security 20). 985–1002.

[12] David G Balash, Xiaoyuan Wu, Miles Grant, Irwin Reyes, and Adam J Aviv. 2022.
Security and Privacy Perceptions of {Third-Party} Application Access for Google
Accounts. In 31st USENIX Security Symposium (USENIX Security 22). 3397–3414.

[13] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. 2018. If this then what? Con-
trolling flows in IoT apps. In Proceedings of the 2018 ACM SIGSAC conference on
computer and communications security. 1102–1119.

[14] Lei Bu, Qiuping Zhang, Suwan Li, Jinglin Dai, Guangdong Bai, Kai Chen, and
Xuandong Li. 2023. Security Checking of Trigger-Action-Programming Smart
Home Integrations. In Proceedings of the 32nd ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. 639–651.

[15] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. 2023.
Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv
preprint arXiv:2303.12712 (2023).

[16] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A Selcuk Uluagac. 2018. Sensitive information tracking
in commodity {IoT}. In 27th USENIX Security Symposium (USENIX Security 18).
1687–1704.

[17] Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated
{IoT} Safety and Security Analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 147–158.

[18] Yunang Chen, Mohannad Alhanahnah, Andrei Sabelfeld, Rahul Chatterjee, and
Earlence Fernandes. 2022. Practical Data Access Minimization in Trigger-Action
Platforms. In 31st USENIX Security Symposium (USENIX Security 22). USENIX
Association, Boston, MA, 2929–2945. https://www.usenix.org/conference/
usenixsecurity22/presentation/chen-yunang-practical

[19] Yunang Chen, Amrita Roy Chowdhury, Ruizhe Wang, Andrei Sabelfeld, Rahul
Chatterjee, and Earlence Fernandes. 2021. Data privacy in trigger-action systems.
In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 501–518.

[20] Camille Cobb, Milijana Surbatovich, Anna Kawakami, Mahmood Sharif, Lujo
Bauer, Anupam Das, and Limin Jia. 2020. How Risky Are Real Users’ IFTTT
Applets?. In Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020).
USENIX Association, 505–529. https://www.usenix.org/conference/soups2020/
presentation/cobb

[21] Zheran Fang, Weili Han, and Yingjiu Li. 2014. Permission based Android security:
Issues and countermeasures. computers & security 43 (2014), 205–218.

[22] Adrienne Porter Felt, Serge Egelman, and David Wagner. 2012. I’ve got 99
problems, but vibration ain’t one: a survey of smartphone users’ concerns. In
Proceedings of the second ACM workshop on Security and privacy in smartphones
and mobile devices. 33–44.

[23] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. 2018. De-
centralized action integrity for trigger-action IoT platforms. In Proceedings 2018
Network and Distributed System Security Symposium.

[24] Vijay K Garg. 2015. Introduction to lattice theory with computer science applications.
John Wiley & Sons.

[25] Hamza Harkous, Sai Teja Peddinti, Rishabh Khandelwal, Animesh Srivastava,
and Nina Taft. 2022. Hark: A Deep Learning System for Navigating Privacy
Feedback at Scale. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
2469–2486.

[26] Mitra Bokaei Hosseini, Travis D Breaux, Rocky Slavin, Jianwei Niu, and Xiaoyin
Wang. 2021. Analyzing privacy policies through syntax-driven semantic analysis
of information types. Information and Software Technology 138 (2021), 106608.

[27] Mitra Bokaei Hosseini, John Heaps, Rocky Slavin, Jianwei Niu, and Travis Breaux.
2021. Ambiguity and Generality in Natural Language Privacy Policies. In 2021
IEEE 29th International Requirements Engineering Conference (RE). IEEE, 70–81.

[28] Kai-Hsiang Hsu, Yu-Hsi Chiang, and Hsu-Chun Hsiao. 2019. Safechain: Securing
trigger-action programming from attack chains. IEEE Transactions on Information
Forensics and Security 14, 10 (2019), 2607–2622.

[29] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
ZhuoqingMorleyMao, Atul Prakash, and SJ Unviersity. 2017. ContexloT: Towards
providing contextual integrity to appified IoT platforms.. In NDSS, Vol. 2. San
Diego, 2–2.

[30] Klaus Krippendorff. 2018. Content analysis: An introduction to its methodology.
Sage publications.

[31] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2022. What Makes Good In-Context Examples for GPT-3?. In
Proceedings of Deep Learning Inside Out: The 3rdWorkshop on Knowledge Extraction
and Integration for Deep Learning Architectures, DeeLIO@ACL 2022, Dublin, Ireland
and Online, May 27, 2022, Eneko Agirre, Marianna Apidianaki, and Ivan Vulic
(Eds.). Association for Computational Linguistics, 100–114. https://doi.org/10.
18653/v1/2022.deelio-1.10

[32] Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhiqiang Zuo, Dileepa
Fernando, Zhenkai Liang, and Jin Song Dong. 2021. Identifying privacy weak-
nesses from multi-party trigger-action integration platforms. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
2–15.

[33] Kulani Tharaka Mahadewa, Kailong Wang, Guangdong Bai, Ling Shi, Jin Song
Dong, and Zhenkai Liang. 2018. HOMESCAN: Scrutinizing Implementations of
Smart Home Integrations. In 2018 23rd International Conference on Engineering of
Complex Computer Systems (ICECCS). 21–30. https://doi.org/10.1109/ICECCS2018.
2018.00011

[34] Mark Huasong Meng, Qing Zhang, Guangshuai Xia, Yuwei Zheng, Yanjun Zhang,
Guangdong Bai, Zhi Liu, Sin G Teo, and Jin Song Dong. 2023. Post-GDPR threat
hunting on android phones: dissecting OS-level safeguards of user-unresettable
identifiers. In The Network and Distributed System Security Symposium (NDSS).

[35] Jerome H Saltzer and Michael D Schroeder. 1975. The protection of information
in computer systems. Proc. IEEE 63, 9 (1975), 1278–1308.

[36] R.S. Sandhu. 1993. Lattice-based access control models. Computer 26, 11 (1993),
9–19. https://doi.org/10.1109/2.241422

[37] Faysal Hossain Shezan, Kaiming Cheng, Zhen Zhang, Yinzhi Cao, and Yuan Tian.
2020. TKPERM: cross-platform permission knowledge transfer to detect over-
privileged third-party applications. In Network and Distributed Systems Security
(NDSS) Symposium.

[38] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin
Jia. 2017. Some recipes can do more than spoil your appetite: Analyzing the
security and privacy risks of IFTTT recipes. In Proceedings of the 26th International
Conference on World Wide Web. 1501–1510.

[39] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A Gunter. 2019.
Charting the attack surface of trigger-action IoT platforms. In Proceedings of the
2019 ACM SIGSAC conference on computer and communications security. 1439–
1453.

[40] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. 2018. Fear and logging
in the internet of things. In Network and Distributed Systems Symposium.

[41] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D Breaux,
and Jianwei Niu. 2018. Guileak: Tracing privacy policy claims on user input data
for android applications. In Proceedings of the 40th International Conference on
Software Engineering. 37–47.

[42] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc
Le, and Denny Zhou. 2022. Chain of Thought Prompting Elicits Reasoning in
Large Language Models. CoRR abs/2201.11903 (2022). arXiv:2201.11903 https:
//arxiv.org/abs/2201.11903

[43] Fuman Xie, Yanjun Zhang, Chuan Yan, Suwan Li, Lei Bu, Kai Chen, Zi Huang,
and Guangdong Bai. 2022. Scrutinizing privacy policy compliance of virtual
personal assistant apps. In 37th IEEE/ACM International Conference on Automated
Software Engineering. 1–13.

[44] Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and Blase
Ur. 2019. AutoTap: synthesizing and repairing trigger-action programs using LTL
properties. In 2019 IEEE/ACM 41st international conference on software engineering
(ICSE). IEEE, 281–291.

[45] Lefan Zhang, Weijia He, Olivia Morkved, Valerie Zhao, Michael L Littman, Shan
Lu, and Blase Ur. 2020. Trace2tap: Synthesizing trigger-action programs from
traces of behavior. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 4, 3 (2020), 1–26.

[46] Shiyu Zhang, Juan Zhai, Lei Bu, Mingsong Chen, Linzhang Wang, and Xuandong
Li. 2020. Automated generation of ltl specifications for smart home iot using
natural language. In 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 622–625.

3114

https://gdpr-info.eu/
https://ifttt.com/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-rar-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-rar-12
https://oauth.net/
https://zapier.com/
https://www.appcensus.io/search
http://www.polcomm.org/wp-content/uploads/ICR01022012.pdf
http://www.polcomm.org/wp-content/uploads/ICR01022012.pdf
https://expandedramblings.com/index.php/ifttt-statistics-and-facts/
https://expandedramblings.com/index.php/ifttt-statistics-and-facts/
https://www.usenix.org/conference/usenixsecurity19/presentation/andow
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yunang-practical
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yunang-practical
https://www.usenix.org/conference/soups2020/presentation/cobb
https://www.usenix.org/conference/soups2020/presentation/cobb
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.1109/ICECCS2018.2018.00011
https://doi.org/10.1109/ICECCS2018.2018.00011
https://doi.org/10.1109/2.241422
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

WWW ’24, May 13–17, 2024, Singapore, Singapore Liuhuo Wan, Kailong Wang, Kulani Mahadewa, Haoyu Wang, and Guangdong Bai

A APPENDIX

A.1 Approach of OAuth Automation

We create a set of test accounts for PFCon to complete this process.
It uses an HTML parser to process each web page and search for
all tags that potentially involve user inputs or user interactions, for
example, <input>, <button> and <a>. From them, it then identifies
the type of each tag, including the username/password fields, and
navigation/login/authorization buttons, based on the attributes of
the tag, e.g., id, class, and name. The username/password fields are
identified from input and div tags, and login/authorization actions
are identified from a and button tags. To comprehensively capture
the permission-related information, PFCon extracts all visible texts
throughout the connection process.

A.2 Expanded Keywords

We list the expanded keywords as complementary for PolicyLint
and the original keywords of PolicyLint in Table 7.

Table 7: Lexicosyntatic patterns/keywords for subsumptive

relationships

Expanded keywords for PolicyLint

Type Keyword

with along with, together with, accompany, in addition to
contain composed of, containing

PolicyLint

Pattern

P1 𝑋 , such as 𝑌1, 𝑌2, ..., 𝑌𝑛
P2 such𝑋 as 𝑌1, 𝑌2, ..., 𝑌𝑛
P3 𝑋 [or |and] other 𝑌1, 𝑌2, ..., 𝑌𝑛
P4 𝑋, including 𝑌1, 𝑌2, ..., 𝑌𝑛
P5 𝑋, especially 𝑌1, 𝑌2, ..., 𝑌𝑛
P6 𝑋, [e.g.|i.e.], 𝑌1, 𝑌2, ..., 𝑌𝑛
P6 𝑋 ([e.g.|i.e.], 𝑌1, 𝑌2, ..., 𝑌𝑛)
P7 𝑋, for example, 𝑌1, 𝑌2, ..., 𝑌𝑛
P8 𝑋, which may include 𝑌1, 𝑌2, ..., 𝑌𝑛

A.3 Details of Benchmark

We present a detailed view of our benchmark in Table 8.

A.4 Case Study

We provide a comprehensive analysis, providing detailed examples
to elucidate the root causes mentioned in RQ3.

Case study 1. Service 4682 bundles different operations “access”,
“change”, “add” and “delete” (your documents) into one group, IFTTT
developers acknowledge that “delete” is not required but they have
to apply based on the permission bundle setting of 4682. Service
6432, 6750 and 7804 also bundle “create”, “modify” and “delete” (your
documents) into one group. Similarly, different objects: “photos”
and “videos” are bundled and have to be applied together regardless
of actual requirement.

Case study 2. Template example:
The template content:
1. Identify your home appliances.
2. Access to your dryer (service name).
3. Monitor appliance.
4. Control appliance.
5. Get and modify settings.
6. Forward events.

Company G has integrated multiple services: G calendar, G assis-
tant, G contacts, G docs, G drive, G sheets, G tasks and G wifi into
IFTTT. G docs, drive and sheets share a very similar pattern and all
contain requested permission “Share and stop sharing your G Drive
files (G Docs documents/spreadsheets) with others”, but this permis-
sion is not required by IFTTT. Even worse, all services (i.e. cleaning
robot, coffee machine, dishwasher, dryer, etc) under company H
share one OAuth template which only changes the service name
as shown in the example. In this situation, the service cookit and
cooktop don’t fit in the template and are detected with permission
excess issues. Template usage also happens to another company
GE that provides smart home services like water heaters, washers,
ovens, refrigerators, dryers, air conditioners and dishwashers.

Case study 3. Service 6460 only exposes trigger apis (read per-
mission required) for IFTTT, but “control your other smart home
devices” (read and action permission) is requested. This happens
frequently for IoT devices due to the poorly organized permission
system, developers are unable to provide more fine-grained per-
mission compared with Software like Android or Cloud Storage.
Service 3828 (one famous online banking) provides “Freeze and
unfreeze your card” (highly sensitive operation) for IFTTT but ac-
tually, such dangerous permissions are not required. From this case
study, we observe that even the financial company would bring in
such security issues. Considering its severe effects being manip-
ulated, this must raise an alert and be handled properly by both
IFTTT and service providers.

Table 8: Details of Benchmark

Service Name B
†

G D Service Name B G D

7858 0 0 0 9393 0 0 0
8060 0 0 0 1793 0 0 0
3814 0 0 0 3911 0 0 0
4591 0 0 0 5902 0 0 0
6853 0 0 0 2977 0 0 0
7078 0 0 0 2453 0 0 0
6748 0 0 0 9665 0 0 0
6451 0 0 0 7470 0 0 0
5152 0 0 0 1645 0 0 0
9366 0 0 0 2945 0 0 0
1328 0 0 0 1535 0 0 0
4202 0 0 0 1020 0 0 0
1120 0 0 0 6151 0 0 4
0004 0 0 0 0069 0 0 1
7008 0 0 0 0553 0 0 4
2869 0 0 0 3612 4 4 4
8108 0 0 0 8027 1 1 1
9970 0 0 0 0047 1 1 3
9700 0 0 0 0042 2 2 2
6860 0 0 0 6188 1 1 4
5590 0 0 0 0021 6 6 8
2534 0 0 0 0031 3 3 3
9378 0 0 0 0308 5 5 5
9984 0 0 0 1406 1 1 3
3970 0 0 0 9352 8 8 8
6751 0 0 0 4682 13 13 13
0383 0 0 0 8624 1 1 1
9459 0 0 0 2999 6 6 9
5243 0 0 0 3811 2 2 6
9009 0 0 0 9650 9 11 13
9124 0 0 0 6155 10 10 12
7718 0 0 0 6516 2 3 5

† G: GroundTruth, D: Detector, B: G∩D

3115

Don’t Bite Off More than You Can Chew: Investigating Excessive Permission Requests in Trigger-Action Integrations WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 9: A comparison among PFCon and other studies

Service-level Applet-level
Operation Object Data-flow Chaining

ETAP [19] - - ✓ -
LazyTap [9] - - ✓ -
MinTap [18] - - ✓ -
TAIFU [32] - - ✓ -
DTAP [23] - - - ✓

MEDIC [14] - - - ✓

TKPERM [37] - - - ✓

AutomatedLTL [46] - - ✓ ✓

AutoTap [44] - - ✓ ✓

PFCon ✓ ✓ - -

A.5 Comparison with Other Work

The comparison with reference to other work is listed in Table 9.
Researchers primarily emphasize applet-level security analysis, ex-
amining aspects such as data flow. In contrast, PFCon specifically
targets the consistency of service-level permission functionality,
aiming to address existing research gaps in this domain.

3116

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Background and a Running Example
	2.2 Threat Model and Scope
	2.3 Permission Excess Definitions

	3 Our Approach
	3.1 Overview of PFCon
	3.2 Artifact Collection
	3.3 Permission Extraction
	3.4 Permission Excess Detection

	4 Evaluation
	4.1 Dataset
	4.2 RQ1: Permission Excess Landscape
	4.3 RQ2: Performance Evaluation
	4.4 RQ3: Root Causes for Permission Excess

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Approach of OAuth Automation
	A.2 Expanded Keywords
	A.3 Details of Benchmark
	A.4 Case Study
	A.5 Comparison with Other Work

