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Abstract. Agriculture has seen many revolutions since the booming
Internet of Things (IoT) was embedded to enable the smart agricul-
ture (SA) scenarios. SA integrates end devices, gateways and clouds to
digitalize and automate traditional farming methods. Due to the open
deployment and wide range accessibility, SA systems face a new attack
surface that may lead to security and privacy concerns. It is expected
that the cyber security and data science research communities will set
off on constructing advanced technologies to safeguard this critical in-
frastructure, e.g., data-driven protection and AI-enabled defense.

In this work, we set up an SA testbed named SATB that can facili-
tate SA dataset generation. SATB is designed to be extensible so that
it is capable of incorporating sensors (e.g., SenseCAP sensors) and pro-
tocols (e.g., LoRaWAN) that are extensively adopted in real-world SA
systems. To test the usability of SATB, we use it to create a compre-
hensive SA network dataset for research use. With SATB, our dataset
can capture data that rigorously covers the whole lifecycle of SA sce-
narios, from the authentication stage to the runtime functioning stage.
We design five typical test cases, and SATB can generate network traces
based on them. SATB also supports generating attack traces of net-
work reconnaissance and vulnerability scanning. We show the details of
our dataset collection process on SATB and conduct a preliminary sta-
tistical analysis, to enlighten potential smart use of our testbed. The
collected dataset is released online to facilitate related research: https:
//github.com/UQ-Trust-Lab/2022-SATB.
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1 Introduction

The recent booming Internet of Things (IoT) has penetrated many industries,
from automotive, home automation, manufacturing to agriculture and cities.
Agriculture, one of the most important activities of human civilization, is a
typical area that IoT has introduced revolutions. Thanks to the digitalization
technologies and innovations, we have entered an era of smart agriculture (SA)
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or Agriculture 4.0. Integrating connected devices with cloud and mobile applica-
tions, SA scales up production processes while consuming less natural resources.
It has reshaped those traditional processes from managing cattle, monitoring cli-
mate conditions, irrigating farms to harvesting crops, greatly enhancing automa-
tion, efficiency and sustanability. A recent study reports that the IoT-enabled
SA market reached 11.20 billion USD in 2021 and is expected to reach 26.65
billion in 2030 [3].

As one of the emerging paradigms that incorporate IoT into a traditional do-
main, SA has demonstrated its similarity in the design of the architectures and
workflows to other domains. Nonetheless, it has a wider attack surface that leads
to new cyber threats that have not been well studied in other IoT systems. First,
in order to enable a longer range of wireless communication, SA systems usually
support LoRaWAN [4] that enables miles of long-range communications. Unlike
in smart home systems where Bluetooth and ZigBee are mainly used for com-
munications and wireless signals are restricted within a narrow and trustworthy
range (e.g., 10 meters for Bluetooth), an attacker can easily capture or inject
wireless traffic to gain credentials or hijack into established communications.
Second, end devices in SA, e.g., sensors and actuators, are mostly deployed in
open or rural areas. Unlike in smart city systems where boxes can be installed or
camera surveillance can be deployed to protect them, the SA devices are exposed
to physical attacks. The attacker may temper with or even remove the sensors.
Third, the SA devices are also subject to extreme weather conditions (e.g., rain
and lightning) and wild animals, which may render them unavailable.

Due to the rapid growth of SA, several studies have been conducted to analyze
the security of SA systems. Various advanced data analysis techniques have
been proposed to detect attacks from the huge amount of data [9, 21, 26, 33].
Nonetheless, there is still a lack of SA domain-specific dataset that can be used
by these studies for evaluation and benchmarking. Researchers have to turn to
those generic IoT or industry IoT (IIoT) datasets, e.g., UNSW-NB15 [24] and
TON IoT [23].

In this work, we set off to build up an SA testbed named SATB for collect-
ing SA domain-specific datasets. SATB follows a widely adopted architecture,
which interconnects end devices, gateways and servers with the protocols used
in the real-world SA scenarios. Without losing representativeness, our testbed is
constructed from equipment and cloud services that have been widely deployed
for commercial use. For the communication between sensors and the servers, we
deploy LoRaWAN, the de facto protocol used in real-world SA systesms.

SATB enables us to construct a preliminary dataset. As a case study, we
design five test cases to drive the execution of SATB, and during the execution,
we capture the communication traces. Through this, we come up with a dataset
that covers the main stages of SA, from authentication to runtime functioning.
This yields 671,239 records of network packets. With SATB, we are also able to
conduct attacks and include the attack data into our dataset. As the first step,
we have conducted a network reconnaissance with Nmap [5] and a vulnerability
scanning with OpenVAS [7]. Both tools are typical attack tools of penetration
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testers and hackers in practice. This generates another 167,090 records of attack
packets.

To explore the usability of SATB, we explore the quality of the collected
dataset with some preliminary studies. With simple preprocessing, the collected
traces can be formatted. We can then reveal the protocols and services that
packets belong to. The LoRaWAN payloads are kept in the dataset and can be
decoded with off-the-shelf parsers. Key information for intrustion detection, such
as the used ports and constant strings can be revealed by our dataset.
Contributions. In summary, our work makes the following contributions.

– An extensible and representative testbed. We construct a testbed
named SATB with commercial SA equipment and open-source software stacks.
It represents the mainstream architecture and workflow of SA systems. Our
testbed is extensible that other sensors or servers can be easily plugged for
simulation and dataset collection.

– Simulation of real-world attacks. Based on our in-house testbed, we are
able to take the first step of generating attack data against SA systems. We
conduct network reconnaissance and vulnerability scanning on the testbed,
and the attack traces can be captured by our testbed.

– An SA network dataset. With SATB, we build a dataset that includes
876,371 records of network packets. It covers the communications between
end sensors and the servers, and contains the data of the entire lifecycle from
authentication to runtime functioning.

2 Background and Related Work

2.1 Smart Agriculture

The smart agriculture (SA) technology is a concept that makes use of advanced
technologies such as Internet of Things (IoT), robotics and big data, to enhance
the traditional agriculture industry. These technologies can form a network of
physical objects, including sensors, softwares, or other technologies. Owing to en-
hanced connectivity, devices become able to communicate with gateways, servers,
applications as well as other devices, exchange data and perform the tasks that
they are designed for.

With the empowerment of smart agriculture technologies, the farming pro-
cess has been changed dramatically. In a farming process, the SA can be divided
into three stages, i.e., data gathering, data analysis, and reaction and control. In
the first stage, the sensors deployed in the farms are used to monitor the ani-
mal activities and environment such as temperature, soil moisture and humidity.
They upload the data to the cloud in real time. In the second stage, the cloud
side employs data-driven techniques to analyze the data, and then correspond-
ing actions can be taken in the reaction and control stage. This can either be
a real-time “trigger and action automation”, or an action taken after diagno-
sis. Taking watering as an example, if the sensor detects that the soil moisture
level is lower than expected, the water dispensers in the farm can start to work
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automatically and water the crops until the soil has reached the desired mois-
ture level. It ensures that the crops will not be underwatered or overwatered.
With SA technologies, the farmers are able to monitor the environment remotely
and automate the farming process with the minimal use of labour and natural
resources such as water and fertilizer.

2.2 LoRaWAN

LoRaWAN [4] is a communication protocol at the data link and network layers.
It works on top of LoRa radio modulation technique. A LoRaWAN architecture
typically consists of four components: end nodes, gateway, network server and
application server.

– End nodes. End nodes are typically sensors and actuators. They commu-
nicate with the gateway through the LoRa protocol.

– Gateway. The gateway is the bridge between end nodes and the network
server. It plays a role of the access point or the relay. The gateway commu-
nicates with the end nodes through LoRa radio and gathers data from them.
The data is forwarded to the network server through a network protocol
compatible with the server, such as Ethernet, WiFi and 3G/4G.

– Network server. The network server handles the communication with the
gateway and conducts data preprocessing, e.g., deduplication.

– Application server. The application server mainly conducts data analy-
sis and interaction with clients. It is usually installed with computational
resources to handle massive data and generates intelligent response. It also
provides interfaces to the client applications, such as mobile applications
and web applications. The raw data and its analysis results are displayed
to users, and users’ management is forwarded back to the network server
and eventually end nodes for actuation. In practice, the network server and
application server are mostly merged into one single server.

2.3 Related Work

Cyber Security Issues in SA and IoT. A broad range of cyber security
challenges brought by the interconnectivity of SA and IoT have been noticed
and disccussed [8,12,15,19,28–30]. Various threats have been revealed, including
hardware/firmware-specific attacks [13, 14], network-layer attacks [11, 20], and
cloud-specific attacks [18]. It has been demonstrated that the cyber security
issues in SA have attracted attention and posed threat and damages if unsolved.
Various studies have also been proposed to migitate the cyber risks at different
IoT layers, from device layer [16,32], edge layer [25] to cloud layer [31].
IoT-related Testbeds and Datasets. Sivanathan et al. [27] build up a smart
environment with a variety of IoT devices, including spanning cameras, lights,
plugs, motion sensors, appliances, and health-monitors. Alsaedi et al [10] con-
struct a TON IoT dataset, which includes telemetry data of IoT/IIoT services,
operating system logs and network traffic of IoT network. Compared to these
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studies, SATB mainly focuses on SA scenarios and reflects the representative
workflow and working procedures. Specific analysis and data processing are also
performed on the traffic. For example, LoRaWAN packets are decoded and at-
tributes are extracted from them.

Recently, Gondchawar et al. [17] proposes a IoT-based SA framework, which
consists of three end nodes and a PC to control the system. The end nodes are
AVR Microcontroller Atmega 16/32, ZigBee Module, and Temperature Sensor
LM35. Their testbed uses Dig Trace, SinaProg and Raspbian Operating System
as the software stack. Compared to their work, the devices in our testbed are
more up-to-date and can better reflect the current SA systems in practice.

3 SATB: a LoRaWAN SA Testbed

3.1 Components of SATB

We have built up a LoRaWAN Smart Agriculture Testbed named SATB to
facilitate data collection. SATB consists of three major components: end devices,
gateway and server, as shown in Fig. 1.
End devices and gateway. We deploy two SenseCAP sensors and SenseCAP
gateway, as listed in Table 1. The sensors monitor the soil moisture, temperature
and light intensity, and report the readings to the gateway through LoRa radio.
Server. The server our testbed uses is called ChirpStack [2], which is a Lo-
RaWAN network server stack. It consists of the gateway bridge, network server
and application server, which merge the modules discussed in Section 2.2 into
one server. The gateway bridge handles the communication with the LoRaWAN
gateway and converts the LoRa packets into ChirpStack Network Server com-
patible data format. The network server then de-duplicates the frames received
by the LoRa gateways and forwards them to Application Server. The application
server plays the role of the “inventory” of the LoRaWAN infrastructure. It offers
a web interface for users to manage, view and organize the stored data.

3.2 Functionalities of SATB

Each end devices and the gateway have an identifier called Extended Unique
Identifier (EUI), which is delivered to the end user with their packages. For a
device to be recognized by ChirpStack server, its EUI has to be registered with
the latter. This can be done through the web portal provided by the application
server. For a device to be connected to the network server, the correct app key
should be provided upon authentication.

The testbed is deployed in the Device Test Lab on UQ campus. The sensors
are connected to the gateway wirelessly while the gateway is connected to the
Internet via Ethernet. A Dell desktop installed with the ChirpStack network
server is connected to the same Ethernet. Three Docker containers are deployed
in the desktop, each of which hosts one module of the ChirpStack network server.
They communicate with each other through Docker’s single-host networking. We
install a packet logger named Wireshark [1] on the desktop to capture all traffic
relayed by the gateway. It also can capture the traffic among the three modules.
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Fig. 1: The architecture and a photo of our testbed

Table 1: The IoT devices in our testbed
IoT Device Device Type

SenseCAP Outdoor Gateway Gateway
SenseCAP Soil Moisture & Temp Sensor End device
SenseCAP Light Intensity Sensor End device

4 A Case Study: Constructing an SA Dataset with SATB

To demonstrate the usablity of SATB, we use it to construct a preliminary
dataset. It includes SA network traces in normal operation and attack scenarios.

4.1 Test Cases and Data Collection

To retain representativeness, we propose five application scenarios to make our
dataset. For each scenario, we design a test case to drive the execution and
communication of each component in our testbed. Below, we describe our test
cases (TCs).

– TC1. When the gateway and the sensors are not registered with ChirpStack
server, we connect the gateway and the sensors to the network server. In
this test case, the gateway and sensors cannot be recognized by the network
server.

– TC2. When the gateway and the sensors are not registered, we register the
gateway, connect the gateway to the network server, and then connect the
sensors to the network server. In this test case, the gateway can be connected
but the sensors are not recognizable.
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– TC3. When the gateway is registered and the sensors are not, we connect
the gateway to the network server, register the sensor with correct EUI but
with incorrect app key, and then connect the sensor to the network server.
In this test case, the gateway can be connected but the sensors cannot.

– TC4.When the gateway is registered and the sensors are not, we register the
sensors, connect the gateway to the network server and connect the sensors
to the network server. In this test case, both the gateway and the sensors
can be connected to the network.

– TC5. When the gateway and the sensors are both registered, we connect
the gateway and the sensors to the network server. In this test case, both
the gateway and the sensors can be connected to the network.

To test SATB comprehensively, we also create attack scenarios on top of the
use cases. As the first step, we consider two types of attacks - reconnaissance and
vulnerability scanning. For the former, we apply a widely used network scanner
called Nmap [5] to scan against our testbed, with different scanning methods such
as SYN Scanning and TCP Connect Scanning. For the latter, we use a popular
vulnerability assessment tool OpenVAS [7] to conduct a vulnerability scanning.
It has the signature of most known software vulnerabilities and checks whether
the scanned system is subject to those vulnerabilities. We turn on Wireshark to
log the network traffic while we execute the test cases and attacks. Filters are
set to ensure that only the relevant packets are collected. The packets are saved
as .pcap files.

4.2 Data Preprocessing

After the data collection, we further process the data. We parse each packet in
the .pcap file to extract the features, including source ip address, destination ip
address, source port, destination port, protocol information and other protocol-
specific fields depending on the protocol of the packet. For example, if a packet
is an MQTT packet, MQTT-specific fileds, such as the MQTT message type,
remaining length, and payload field are included. After the processing, the ex-
tracted fields of the packet are exported to a .csv file. The main features of our
dataset are listed in Table 2.

During the data process, we also apply a tool called Zeek (previously Bro-
IDS) [6] on the captured packets. It takes the .pcap file as input and turns it into
high-fidelity transaction logs. This tool is also able to find unusual and suspicious
behaviours, which will be used to confirm the label of the packets captured in
the attacking stage.

4.3 A Preliminary Study of the Dataset

In this section, we present a preliminary study of the collected dataset and give
its basic information.
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Table 2: Main features of our dataset
Name Description

1 src ip The source ip address of the packet

2 dst ip The destination ip address of the packet

3 src port The source port of the packet

4 dst port The destination port of the packet

5 protocol The protocol-specific information of the packet

6 other Other information about the packet

Packets Distribution.

Overall, we have collected 876,371 packets, which take around 1.5 GBytes. They
mainly cover three working stages, i.e., authentication stage, runtime function-
ing stage, and attacking stage. The majority of the packets are in runtime
use (671,239 packets). The authentication stage and attacking stage have 38,042
and 167,090 packets respectively.

Authentication. There are two types of authentication in LoRaWAN: Over
The Air Activation (OTAA) and Activation By Personalisation (ABP). The one
used by our testbed is OTAA, which is more extensively used in practice than
ABP. In OTAA activation, each time when the end devices intend to join, the
session keys are different. When an end device attempts to join the network,
it sends a join-request message which contains AppEUI, DevEUI, DevNonce
and Message Integrity Check (MIC) value. The network server processes this
message, and then generates two session keys and a join-accept message if the
end device is permitted to join. The join-accept message is then encrypted using
the app key and sent back to the end device as a normal downlink. If the join
request is not accepted, no response will be replied.

Runtime functioning. After the authentication, the end devices and the
gateway are connected to the network. The testbed starts operating. The read-
ings of the sensors are periodically reported to the network server, through the re-
lay of gateway and gateway bridge. The update period can be configured through
the web portal of the application server. The network server then dedupliates the
received packets and formats them so that they can be usable by the application
server.

Attacking. The following scanning traces are included in the collected dataset.

1. Nmap SYN Scan: It scans the ports of a target machine by sending a TCP
packet with the SYN flag set.

2. Nmap TCP Connect Scan: It scans the ports of a target machine by estab-
lishing a full connection.

3. Nmap Service and Version Scan: It detects more information about the ver-
sion of the services running on the target machine.

4. Nmap Operating System Scan: It detects the operating system of the tar-
get machine by sending a series of TCP, UDP packets and examining the
response.
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Fig. 2: Protocol types in the authentication stage

Table 3: An example of a decoded LoRaWAN payload
Feature Description Decoded Value
Message Type MAC message types Join Request

PHYPayload LoRa Physical Payload MHDR[1] — MACPay-
load[..] — MIC[4]

MHDR MAC Header 02
MACPayload MAC Payload of Data Messages 8DC0022CF7F110
MIC Message Integrity Code, 24400040

which ensures the integrity of the packet
MACPayload MAC Payload of Data Messages AppEUI[8] — DevEUI[8]

— DevNonce[2]
AppEUI 64-bit unique identifier for Join Server 2410F1F72C02C08D
DevEUI 64-bit globally-unique Extended Unique 400040

Identifier (EUI-64) assigned by the manufacturer
DevNonce A random number NA

5. OpenVAS full and deep scanning: It performs a full and deep vulnerability
scanning against the target machine.

Packets of Authentication Stage.

We attempt to recognize the service types of the packets collected at the au-
thentication stage. We focus mainly on the application-layer protocols and the
statistics as shown in Fig. 2. The majority of packets in the authentication
stage is PGSQL, which is mainly used for PostgreSQL, an open-source rela-
tional database management system. It is integrated into the ChirpStack net-
work server stack to store device-related events. Since all events are written into
the database, the packets of this type become dominant.

Many packets have unknown types and they are shown as TCP or UDP
packets. Almost all UDP packets contain LoRaWAN payloads that are not rec-
ognized by Wireshark. However, the LoRa packets can actually be extracted
from them. For example, one of the UDP packets that we have captured con-
tains “028dc0022cf7f11024400040” as its payload, which is hex encoded. We use
a LoRa packet decoder to decode the payload and the attributes can be extracted
as shown in Table 3.
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(a) Authentication stage (b) Runtime stage

Fig. 3: Word cloud of used ports in authentication stage and runtime stage

Fig. 4: The Distribution of connection state in authentication stage

We also conduct an analysis on the source ports of the packets. In Fig. 3a,
we use a word cloud to present the occurrence of ports in the dataset. If a port
appears more frequently, its size in the graph is larger. We can observe that the
ports 56062, 56064, and 51620 account for a higher proportion in the captured
packets. They are mainly used by TCP.

We also analyze the connection states from the packets. As shown in Fig. 4,
around 84% of the packets has a connection state of SF, which means the con-
nection is established and terminated normally. OTH and S0 also have a higher
percentage than the rest of the packets. The state OTH occurs when there is no
SYN seen in the connection, it might because it is a midsteam traffic. 6% of the
packets have S0 as their connection state, which means that a connection has
been attempted, but no reply is seen.

Packets of Runtime Functioning Stage.

Similarly, we attempt to recognize the service types of packets and the ports used
in the runtime functioning stage. The results are shown in Fig. 5 and Fig. 3b.

Packets of Attacking Stage.

We first attempt to recognize the service types of packets in the attacking stage.
The statistics is shown in Fig. 6. We can notice that the service of 43.24% of the
packets are unknown (tagged as UDP and TCP packets), while 42.87% of the
packets are HTTP packets. After looking into the packets, the high percentage
of HTTP packets is due to the vulnerability scanning of OpenVAS. When this
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Fig. 5: Protocol types in runtime stage

Fig. 6: Protocol Types in the Attacking Stage

tool conducts scanning, it requests a number of web locations that may con-
tain security issues such as SQL injection or buffer overflow. The word cloud of
scanned web locations is shown in Fig. 7.

We also use Zeek to process the packets captured in attacking stage. There
are 28,806 out of 167,090 attacking packets that are detected unusual or im-
proper behaviors and flagged. The flags can be grouped to a list of 21 flags
in total as shown in Table 4. The most frequent flags that are extracted are
possible split routing, data before established and inappropriate FIN.
The possible split routing happens when the other side of the connection is
not seen. The data before established means before a connection was estab-
lished, some data is sent by a TCP endpoint. The inappropriate FIN happens
when a FIN set in the packet does not follow the RFC for TCP/IP standard.
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Fig. 7: Word Cloud of Scanned Web Locations

Table 4: The list of attack flags
Features

possible split routing DNS Conn count too large
inappropriate FIN line terminated without CRLF
data before established unknown HTTP method
bad HTTP request unescaped % in URI
empty http request partial escape at end of URI
line terminated with single CR data after reset
DNS truncated len lt hdr len premature connection reuse
DNS label forward compress offset HTTP version mismatch
DNS label too long bad HTTP request with version
DNS truncated RR rdlength lt len double % in URI
missing HTTP uri

5 Usage of the SATB Testbed

In this section, we outline a few usage of the SATB Testbed, towards the reliable
operation in a smart agriculture ecosystem.

5.1 Development of Intrusion Detection Systems for SA

The rapid development and adoption of highly diverse IoT devices in smart agri-
culture have created increased attack surface. Therefore, building an intrusion
detection system (IDS) has become an increasingly urgent issue for detecting
network security breaches against SA systems. However, as the performance of
an effective IDS largely relies on the availability of representative and real-life
data, the lack of SA domain-specific datasets has resulted in a significant gap in
the IDS development.

Our high-fidelity SATB Testbed can alleviate the gap by providing intensive
sets of traffic traces for training and testing IDSs. SATB covers the complete
workflow of smart agriculture system ranging from authentication to runtime
usage, which represents the sum of all possible attack vectors that may be ex-
ploited. In addition, the construction of the SA dataset has demonstrated the
capacity of SATB in incorporating a variety of real network intrusion scenarios
against SA systems, not only reflecting the existing attacks of the time, but are
also dynamic and extensible as network scenarios evolve.
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5.2 Preservation of Data Privacy and Integrity for SA

The most significant feature of smart agriculture is its employment of a vast
amount of sensors, devices and equipment, from which an enormous amount
of data gets generated. The challenge of preserving data privacy and integrity
remains open in this area due to the massiveness, complexity and heterogeneity
of the generated data [19,22].

Our SATB Testbed, which serves as the representative digital twins of the
counterparts in the real-world production environment, can greatly facilitate the
research in the key properties of data protection from the following perspectives:
(1) the secure sharing of data with different sensitivity classifications across
stakeholders in the entire supply chain, (2) the secure processing of sensitive
data (e.g., agriculture purchase information) with provable privacy-preservation
and verifiable prevention of information leakage, (3) the provenance based data
integrity checking and verification in the smart agriculture environment.

5.3 Development of Data-driven Applications for SA

We see the opportunities of SATB contributing to the research area in integrat-
ing artificial intelligence and machine learning technologies for the development
of data-driven applications in smart agriculture. For example, the massive real-
life data generated by our testbed (including time series and spatial data) can
be used to train and evaluate real time monitoring systems, which are crucial to
modern farms in improving their productivity and security. In addition, despite
the advantages of LoRaWAN (such as low-power and long-range transmissions
which are typically desirable in the smart agriculture environment), the technol-
ogy has the disadvantage of low-bandwidth transmissions, which has presented
an arising need to integrate edge computing to facilitate the move of data pro-
cessing and analytics to end devices. Our testbed can be used to construct and
test such computing framework with data on edge, extending the functionalites
of smart agriculture applications using LoRaWAN for wide area coverage.

6 Conclusion

In this work, we have designed and developed an SA testbed named SATB to fa-
cilitate simulation, attack experiments and dataset generation. SATB consists of
the end devices, gateways, software stacks and protocols that are widely adopted
in real-world SA systems. It is designed to be extensible so that new hardware
and software modules can be installed. To show SATB’s usability, we used it
to construct a comprehensive SA network dataset, which rigorously cover the
whole lifecyle of SA scenarios. For future works, we will enrich the types of the
end sensors to support other protocols. We will also embed an open gateway
that enables the interception of the LoRa packets between the end sensors and
the gateway.
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