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Abstract. In the digital era, business collaboration platforms have become piv-
otal in facilitating seamless remote work and virtual team interactions. These
platforms, typified by Google Workspace, offer an integrated suite of tools (such
as Google Docs, Slides, and Calendar) that significantly enhance business op-
erations. They often extend their functionality through the integration of third-
party applications, known as “add-ons”. Google Workspace exemplifies this trend,
blending traditional business solutions with advanced, add-on-driven capabilities.
While this greatly augments productivity and collaboration for online personal or
team work, concerns about the excessive use of data and permissions have been
raised by both users and legislators, as add-ons can utilize the granted permissions
to access and manipulate files managed by business collaboration platforms.

In this work, we propose an end-to-end approach to automatically detecting ex-
cessive permissions among add-ons. It advocates purpose limitation that the re-
quested permissions of the add-on should be for its specific functionality and
in compliance with the actual needs in fulfilling the functionality. Our approach
utilizes a hybrid analysis to detect excessive permissions, including analysis of
the add-on’s runtime behavior and source code, and state-of-the-art language pro-
cessing techniques for textual artifact interpretation. This approach can serve the
users, developers and store operators as an efficient and practical detection mech-
anism for excessive permissions. We conduct a large-scale diagnostic evaluation
on 3,756 add-ons, revealing that almost half of existing add-ons contain issues of
excessive permissions. We further investigate the root cause of excessive permis-
sions and provide insights to stakeholders. Our work should raise the awareness
of add-on users, service providers, and platform operators, and encourage them
to implement solutions that restrict the excessive permissions in practice.

1 Introduction

Business collaboration platforms represent a complex web-based application paradigm,
epitomizing the concept of a “super platform”. Platforms like Google Workspace [8]
and Zoom [17] exemplify this model by hosting a diverse array of third-party appli-
cations, referred to as “add-ons”. These add-ons integrate deeply with the platform’s
core services, offering users a seamless and efficient experience. Google Workspace,
in particular, is a prime example of this ecosystem, providing a suite of applications
that cater to various business needs. Notable add-ons within Google Workspace include
Auto-LaTeX Equations [2] for Google Docs, facilitating the insertion of mathematical
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equations, and No Phishing for Gmail, enhancing email security [13]. The escalating
demand for remote work, online education, and virtual collaboration has significantly
propelled the adoption and evolution of these platforms, establishing them as mature
ecosystems in the contemporary digital landscape.

The add-on runs with a strong dependence on the host platform. It is typically
executed as an extension without its own process address space, requesting resources
through the APIs provided by the host. Since cross-domain data and control flow are in-
volved, the OAuth protocol [14] has been commonly adopted for performing multi-party
authorization among the add-on, the host and the user. More specifically, developers
simply declare the requested permissions through the OAuth scope fields, in a similar
manner to the Android’s manifest file. As illustrated by the example shown in Figure 1,
the add-on declares three permissions, including the ability to view email messages, send
emails and view user’s spreadsheets, inside oauthScope in the appsscript. jsonfile.
Despite the convenience for authorization, the coarse-grained permission management
inevitably introduces potentially over-privileged or excessive permissions [23,43]. As
a result, dishonest developers could inadvertently request more permissions than those
required by the functionality of their add-ons, rendering ill-purposed exploitation possi-
ble. This clearly violates the principle of least privilege, and may also cross the boundary
for user data protection drawn by the strictly implemented and enforced privacy regula-
tions/laws around the world [3, 7].

As efforts towards a better understanding of the underlying permission management
risks [44] in business collaboration platforms, several empirical studies have focused on
examining the inconsistencies and weaknesses in their permission authorization, such
as privacy violation [22,25,27,36], unprompted permission authorization [47,48], and
phishing [21]. They attribute the user data leakage to loose permission scopes [21,48],
without touching on the essential causes of excessive permission request issues, such as
coarse-grained bundled permissions.

{ — Function uploadAttachments(){

"permission" : "Gmail.view", Functionality var files = GmailApp.
"explanation": "View your Gmail * getMessageByld().getAttachments();
messages." upload(files);

b - }

{ -

Function sendEmail() {
"permission" : "Gmail.send",

: - - var text = "New Notification®;
. B Functionality >
" won . e )
explanation”: "Send emails on - permission var receiver = alice(@gmail.com;
behalf of you."

GmailApp.sendEmail(text, receiver);
3, — )

{

Function upload(files){

"permission” : "Spreadsheets.view",| - .
"sxplanation"‘ "V[i)ew your Excessive fetch('https://box/api/upload’, {
Spreadsheets." - permission method: 'post’,
) ) body: files })

Permissions in oauthScope Google-script code

Fig. 1: An example of permission requests from an add-on
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Our work. This work introduces a novel, scalable end-to-end approach to automatically
detect issues of excessive permissions among Google Workspace add-ons. The objective
is to provide an efficient and practical solution for evaluating excessive permissions for
various stakeholders, including users, add-on developers, and the platform operators.
With our approach, users can better understand excessive permissions before installing
the add-on, and platform operators can scan for potential excessive permissions to
enhance the permission and privacy compliance of their system. For add-on developers,
this approach can mitigate the threats of excessive permissions before releasing their
products.

We implement our approach as PEDEc, a permission excess detector for Google
Workspace add-ons. PEDEc consists of two major components, the functionality ex-
tractor and the excessive permission detector. First, due to the partial availability of
source code for these add-ons (Challenge #1), the functionality extractor extracts all
functionality-related materials, including the interacted DOM, through web testing. We
acknowledge that web testing has limitations and may not cover all paths. To sup-
plement, we include functionality-related materials such as descriptions, tutorials, or
demonstration videos. For the partially available add-ons with source code (228), we
develop a lightweight static analysis tool to extract their functionality-related host APIs.
Second, the excessive permission detector checks the consistency of functionality per-
missions and requested permissions to detect excessive permissions. The functionality
permissions, sourced primarily from the materials extracted by the functionality extrac-
tor, primarily comprise natural language descriptions with varying format and quality
among add-ons (Challenge #2). To address this, we employ the latest natural language
inference (NLI) model to infer the functionality-related (or unrelated) permissions.

To understand the current status of excessive permissions among add-ons, our pro-

posed approach is utilized to comprehensively screen 3,756 add-ons in the Google
Workspace Marketplace [12]. The results show that a significant number (2,091) of
add-ons have excessive permission issues.
Contributions. To the best of our knowledge, we are the first to diagnose the excessive
permission issues of add-ons from Google Workspace at scale. In this work, we partic-
ularly focus on Google Workspace due to its popularity, which constitutes a substantial
and representative market share of around 70% [8] in business collaboration platforms.
In summary, this work mainly contributes to the following aspects.

— Understanding the excessive permission issues for add-ons hosted on Google
Workspace. We first formally formulate and study the permission excessive issue,
which has been a key cause for private data mismanagement in add-ons.

— A systematic assessment approach. We propose an automatic tool named PEDEc to
detect excessive permissions among add-ons. We implement a prototype of PEDEc
that checks permission compliance based on a hybrid analysis. The ground-truth
evaluation on 100 add-ons shows that PEDEc achieves a 100% TNR (true negative
rate) and 92% TPR (true positive rate) for detecting the excessive permission issue.

— Revealing prevalence of the excessive permission issue in real-world Google
Workspace add-ons. Our large-scale study on Google Workspace reveals that
permission management of add-ons is problematic (Section 4). Our investigation
reveals that bundled permission declaration is the major cause of such an issue. Our
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findings should raise an alert to the users, and encourage add-on developers and
platform operators to redesign their interfaces.

2 A Running Example And Definitions

2.1 A Running Example

We delineate the overarching workflow of the Google Workspace add-on as follows. The
user interacts with the add-on client on their computer or mobile device. Their request is
sent to the workspace server as an event, which is then handled by a corresponding event
handler provided by the add-on developer. The event handler serves the request, and
during this process, it invokes APIs provided by the workspace to access the user’s data
managed by the workspace. The obtained data may be sent back to the add-on server for
further processing in some computation-intensive tasks. After processing the request,
the workspace server sends a response back to the add-on client and updates the user’s
client page.

For example, when the user clicks the “save attachments” button (shown in the
sidebar of Figure 2), the event is transmitted to the Google server, triggering the event
handler of the Box add-on, this event handler calls the GmailApp.getMessageById().
getAttachments() to retrieve attachments of the current Gmail message and uploads
them to Box cloud storage.

2.2 Problem Definition

PEDEc focuses on addressing the issue of permission excess, specifically determin-
ing whether the add-on unnecessarily requests functionality-irrelevant permissions. To
facilitate the understanding of our work, we formally define the target problem.

Definition 1 (Functionality Permissions). Permissions must be granted to the add-on
Jor it to execute its functionality correctly, denoted as Pyyy,. The functionality of the
add-on can be reflected by its source code, runtime behaviour, and textual description,
and we use P, P,, and P, to indicate the permission sets that are associated with each
of them, respectively. Therefore, we have Py, =Ps UP,. U Pgy.

Definition 2 (Requested Permissions). The set of permissions that the add-on requests
through oauthScope field is called requested permissions, denoted as Py.q. They are
specified by developers (the left side of Figure 1) and vetted by platform operators.

Definition 3 (Excessive Permissions). We name P = Preq — Prun as excessive per-
missions. Intuitively, P is defined as the set of permissions that can be removed from
Pyeq without affecting the normal functionality of the add-on. These permissions are
deemed excessive because they are unnecessary for the add-on to execute its intended
Sfunctionality, and their inclusion raises security and privacy concerns for the users and
their data.
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Fig. 2: Example of the Box add-on

Functionality extractor

AST 3
ldentiticationd| <4

Call flow
analysis

Excessive permission detector

Source code Permission
AST Google API calls I_» alignment
D; i b User interaction Text ]PS
E yr:am] © We p . et Host API calls Requested
esting parsing extraction _
> = permissions
Runnable DOM Interactive elements

Sidebar = Element  |surron OCR ey Bxcessive
identification recognition: @ extraction _r A Classification ]PT permissions
Image v - CSV -
& Sidebar Elements pr— (T5) IPd
A Sampled Functionality
é Description processing i BEOUCSONS

\_ Description /

Fig. 3: Workflow of PEDEc

3  Our Approach

3.1 Approach Overview

We propose a fully automatic analysis approach, leveraging techniques of hybrid func-
tionality analysis and state-of-the-art natural language inference and Text-To-Text-Transfer-
Transformer (T5) models. The overall architecture of our approach is depicted in Figure 3,
which composes the following components.

Functionality Extractor. This component aims to extract functionality-related mate-
rials. The Document Object Model (DOM) tree of a dynamically generated HTML
file provides an accurate hierarchical representation of the available operations on the
add-on interface, allowing us to infer permissions related to the add-on’s functional-
ity (addressing Challenge #1). For the partially available add-ons with source code,
similar to Android, specific actions or functions performed through API calls can reveal
fine-grained permissions.

Excessive Permission Detector. The second component is an excessive permission
detector that compares the functionality permissions based on extracted materials
(Definition 1) with the declared permissions (Definition 2) of add-ons. However, the de-
tection of excessive permissions remains a challenge. Previous efforts [20,23,26,42,47]
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have approached this issue using applications’ counterparts [41,42,49] - applications
that share similar functionality - as a reference. However, this approach is not suitable for
Google Workspace, given the limited number of add-ons (3,756) compared with other
problem settings (millions of mobile and browser applications). Therefore, we propose a
text-based technique to extract permission-related information (addressing Challenge
#2) from application pages, images, and description (to be detailed in Section 3.3).

3.2 Functionality Extractor

Dynamic Analysis for Element Discovery PEDEc extracts functionality-related ma-
terials, such as interacted DOM trees, through dynamic web testing for the majority of
add-ons in the absence of source code. While web testing has limitations in covering
paths requiring semantic-sensitive input, we supplement functionality-related materials
with descriptions and tutorial videos provided by add-on developers. These materials
serve as guidelines for new users, outlining the supported functionality of add-ons.
Dynamic Web Testing. We perform dynamic web testing on add-ons to trigger a wide
range of behaviours and HTML elements, deriving the functionality permissions re-
quired by them. For example, buttons related to creating or deleting user documents
imply permissions related to document management. To this end, we develop a tester
based on Selenium [15] to automatically simulate user interactions. In greater detail, the
tester follows a step-by-step approach. Initially, it installs the add-on, initiates its host
application (e.g., Gmail), and subsequently activates the add-on to conduct a thorough
scan of all user-interactive elements on the interface, such as buttons and input fields.
Following that, it sequentially interacts with these elements, mimicking the user’s per-
spective in a usage scenario. To thoroughly explore these pages, the tester employs the
depth-first search (DFS) algorithm. All dynamically generated HTML files are recorded
at the same time.

To expedite the dynamic analysis process, we restrict the maximum HTML page

search depth to ten, based on our observation from a small-scale empirical study that
100% of sampled add-ons (500 randomly sampled) fall within this limit. Previous studies
also reveal that add-on developers aim to optimize user experience by constricting the
complexity of their products [39,45,48].
Enhancing Interaction during Testing. The effectiveness of dynamic interaction is
intrinsically limited in scenarios where logical dependencies among events are crucial.
For example, certain add-ons require users to set the names of columns in the spreadsheet
before launching specific functions. Basic and straightforward dynamic interactions may
fail to capture such subtle relationships [32], resulting in problems like the inability to
navigate to the next page. Additionally, some add-ons have complex functions that
demand domain knowledge (i.e., insert math equations into a Google Doc) and cannot
be triggered by simple interaction rules. While manual efforts might address these issues,
they are unsuitable for large-scale analysis. As a mitigation strategy, we introduce
a novel performance enhancement technique that incorporates add-ons’ tutorials and
demonstration videos/images.

We start by retrieving all videos and images from the homepage of each add-on. Next,
we employ the openCV [10] library to divide the video into image sequences, sampling
one frame per second, and filter out identical or similar images. Subsequently, we utilize
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the YOLO object recognition method to locate the sidebar of add-on and its interactive
elements from the images. Finally, we apply Optical Character Recognition (OCR) to
identify the text description for the target interactive elements.

Locating Add-on Sidebar. Figure 2 illustrates how the add-on appears as a sidebar in
Gmail, enhancing the functionality of the host application. To accurately recognize the
add-on in the derived images, we utilize the state-of-the-art object detection algorithm
YOLOvS [28]. To train the model, we manually label 150 images collected from the
Google Workspace Marketplace and split them into training (80%), validation (15%),
and test (5%) datasets. Our model achieves a 100% accuracy rate with a total processing
and prediction time of less than 7ms. We have publicly shared our dataset* for further
research.

Locating Interactive Elements. To build our model dataset, we utilize HTML pages
successfully triggered during Dynamic Web Testing and extract the attributes of in-
teractive elements using Selenium. This dataset includes fundamental details about
interactive elements in HTML pages, such as type (e.g., button, input field), explanatory
text, and coordinates. Additionally, we convert HTML pages into screenshots using
selenium, associating element attributes as the ground truth of each screenshot.

We gather a total of 3,553 different HTML pages containing 18,195 interactive
elements during Dynamic Web Testing. Using the same experimental settings as in the
sidebar location, we achieve a high accuracy of 92%.

Code Analysis for API Call Identification The add-on is developed in Google Script,
based on JavaScript, and incorporates Host API specifications for interacting with
Google services. While it shares syntax similarities with JavaScript, it introduces host-
related features that pose critical challenges to traditional static analyzers. Our goal is
to identify ONLY the Host API calls that the add-on requires for its functionality, e.g.,
GmailApp.getActiveThread() .getEmails() shown in Figure 4. Traditional anal-
ysis (e.g., control flow and data flow analysis) of JavaScript code becomes complicated
and ineffective for add-ons. Therefore, we use syntax-level parsing to track the call chain
in the add-on’s script code.

The workflow of the code analysis is summarized in Algorithm 1. First, we lever-

age esprima [6] to convert all Google Script code of the add-on into Abstract Syntax
Trees (ASTs), which offer a clear view of function and class hierarchy. Second, we
identify entry-point classes> of Host APIs [9] from the ASTs and record all relevant
variables (as shown in line 5-12 in Algorithm 1). We track both intra-function (lines
9-12) and inter-function data flow (lines 7-8) to determine all related Google API calls,
which serve as references for its P;.
Intra-function Call Flow. We record variables related to the entry-point classes as local
variables within the function (line 10 in Algorithm 1), and then traverse all statements
and analyze the CallExpression or AssignExpression to determine whether any
value propagation (e.g., line 1, 9 in Figure 4) or function call occurs (e.g., line 2, 3, 10
in Figure 4). For complex statements (e.g., line 3, 6 in Figure 4), we apply depth-first
search (DFS) of the AST to identify the call chain.

4 https://app.roboflow.com/addon/sidebar
5 Seven are available, each representing a Workspace app, e.g., DocumentApp and Drive App.
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attachment = GmailApp.getMessageById().getAttachments();
attachment.upload('Google Drive Folder');
attachment.getMetadata() .getSender().getEmail ()

func current_active_thread(){
return GmailApp.getActiveThread()
}

emails = current_active_thread().getEmails()
emails.delete()

Fig. 4: An example of script invoking Google APIs

Inter-function Call Flow. We record the variables that appear in the return statement of
a function as global variables along with the function name (line 7-8 in Algorithm 1, line
5-7 in Figure 4). Next, we traverse all statements in other functions, including the main
function, to check whether the recorded function name (line 9 in Figure 4) is called.
This enables us to identify the flow of call chain between functions in the Google Script
code and track the usage of global variables, allowing us to capture dependencies among
functions and identify the Google APIs used across functions.

3.3 Excessive Permission Detector

Following the definition of excessive permissions in Section 2.2, we need to explicitly
determine the requested and functionality permissions respectively.

Requested Permissions. The requested permissions are listed on the homepage of each
add-on, following Google’s permission restrictions [5] as per the standard and can be
accurately parsed.

Functionality Permissions. The functionality permissions include permissions identi-
fied from source code and runtime behaviours of add-ons. The detected APIs from source
code also exhibit no ambiguity by referring to Google developer documentation [9], since
Google lists the required permission for each API. Unfortunately, determining permis-
sions for runtime behaviours is challenging due to the heterogeneity of our analysis (i.e.,
testing and interaction enhancement).

As a result, it is not practical to simply detect excessive permissions through well-
defined techniques such as keywords [32,43] or rule-based [18] matching (which may
lead to high false positives) or human inspection (which is difficult to scale). To address
the challenge in runtime permission detection, we employ a natural language inference
method to infer the functionality permissions existing in the extracted materials. We first
construct a manually labelled dataset for runtime permissions as the ground truth and
train a classifier for accurate permission prediction at runtime.

Data for Determining Runtime Permissions The key challenge in this pertains to the
dataset construction, as only a part of the dynamic analysis results provides permission-
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Algorithm 1 Code analysis for API calls

Input: Source code C
Output: Array of permission-related APIs
1 AST « parse(C), G aprGlobal « dict{}, G ppyLocal <« dict{}

—_

2: GaprEntry < [CalendarApp, DocumentApp, DriveApp, FormApp, GmailApp,
SlidesApp, SpreadsheetApp]

3: function Proc_runcTioN()

4: for stmt in AST do

5: API,G_related < GooGLE_RELATED_API(stmt)

6: if G_related = True then

7: if stmt.type = Return then

8: G aprGlobal[ function] «— API

9: if stmt.type € Variable then

10: G aprLocal|variable] «— API

11: if stmt.type € Expression then

12: APls « APIs U API

13: APIls « APIs UG prLocal
14: GaprLocal < {}

15: function GooGLE_RELATED_API(stmt)
16: Get API_calls of stmt

17: name «— API_calls, G_related «— False

18: if name € (G aprEntry vV G ap;Global vV G gpyLocal) then
19: G_related < True

20: return name, G_related

relevant context. For example, many DOM pages are permission-irrelevant, such as
add-ons settings, advertisements, and membership purchases. The unevenly distributed
permissions further exacerbate the issue, with some permissions being more commonly
seen than others. In this work, we leverage the self-descriptive nature of triggered
HTML pages and images, which contain contextual and semantic significance to runtime
permissions, as discussed by Miniukovich [39]. Based on the technique detailed in
Section 3.2, we convert images and HTML pages derived in dynamic analysis into natural
language description texts. We also include functionality descriptions along with them
for complementary explanations as some dynamically triggered pages might not be self-
explanatory. To further preserve the special contextual meaning of DOM elements such
as buttons, inputs, and radios, we apply an auxiliary processing method using simple
rules [30]. For example, a button named “send an email” would be converted to “This
button helps you send an email”, while an input with the description “email address”
would be converted to “You need to provide an email address to this application”.

We rely on the Natural Language Inference (NLI) [34] to determine if the derived
texts entail specific permissions. This involves deciding whether a natural language
hypothesis can be inferred (i.e., true/entailment) or not (i.e., false/contradiction or un-
determined/neutral) from a given premise. For example, consider a premise that states,
“This application helps you to edit cell values in your spreadsheet and send an email
notification to your collaborators”. A hypothesis claiming, “This application can send
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emails on your behalf” would be labelled as entailment. As an illustration, we pro-
vide some of the used permission hypotheses in Table 1. These hypotheses are derived
from Google’s official developer documentation without any modification [5]. We uti-
lize the pre-trained NLI model used by a recent study [26]. This model is trained on
MultiNLI [12], a dataset comprising 433K sentence pairs from various domains, making
it suitable for our functionality-diverse add-ons. We query the NLI model with each pair
of add-on’s functionality description (i.e., premise) and its requested permission (i.e.,
hypothesis), then record the returned response from this model (i.e., entailment, neural,
or contradiction). After filtering out neutral labels, this results in 7,722 pairs (premise
and hypothesis) labelled as entailment or contradiction.

Table 1: Permission hypotheses

Scope

Hypotheses

drive.readonly

This add-on can see all of your Google drive files.
This add-on can download all of your Google drive files.

drive.file This add-on can see only the specific Google drive files used with itself.
This add-on an edit only the specific Google drive files used with itself.
This add-on can create only the specific Google drive files used with itself.
This add-on can delete only the specific Google drive files used with itself.
drive This add-on can see all of your Google drive files.

This add-on can edit all of your Google drive files.

This add-on can create all of your Google drive files.

This add-on can delete all of your Google drive files.

This add-on can see all your spreadsheets.

This add-on can see all of your spreadsheets.

This add-on can edit all of your spreadsheets.

This add-on can create all of your spreadsheets.

This add-on can delete all of your spreadsheets.

This add-on can see your primary Google account email address.
This add-on can see your personal info that is publicly available.
This add-on can manage your sensitive mail settings, including who can manage your mail.
This add-on can send email on your behalf.

This add-on can add emails to your Gmail mailbox.

spreadsheets.readonly
spreadsheets

userinfo.email
userinfo.profile
gmail.settings.sharing
gmail.send
gmail.insert

Runtime Permission Detection Due to the uneven distribution of the hypotheses (rep-
resenting permissions) in the constructed dataset, some permissions receive more en-
tailment or contradiction labels than others. To prevent bias towards any specific per-
mission, we randomly sampled 40 instances (half entailment and half contradiction) for
each permission. This results in 800 pairs for manual labelling. To avoid ambiguity in
the prediction results, we only label permission as entailment (indicating non-excessive)
or contradiction (indicating excessive), avoiding assigning neutral labels.

We proceed with the manual verification of the description for each involved add-on,
followed by installation and interaction with it to label the functionality permissions and
excessive permissions. The corpus is independently labelled by two authors, both with
a relevant computer science background. A tiny proportion of 0.37% (3 out of 800) of
hypotheses received different labels from them. In cases of disagreement, they would
discuss together to make the final decision. The dataset is split into three parts: 80% for
training, 15% for validation, and 5% for testing. We use a large language model named
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Text-To-Text Transfer Transformer (abbreviated as T5), known for its good performance
in such inference tasks [26], and compare its performance with other mainstream models,
including DistilBERT [11] and GPT-based models [4].

— Fine-tuned T5 model: We utilize the pre-trained T5-base [16] model and fine-tune
it on our labelled corpus. Our model achieves an accuracy of 86.9%.

— DistilBERT: We evaluate the DistilBERT [11] model trained on the GLUE dataset
and fine-tuned on our corpus. While BERT [29] has been a well-known large
language model from 2018 to 2022 (before the rise of ChatGPT), our testing shows
that it achieves an accuracy of 82.8%, which is lower than our TS model.

— ChatGPT: We also evaluate the performance of ChatGPT, one of the most popular
GPT models. However, as ChatGPT is a black-box model, we apply prompt engi-
neering [33] to guide it. To avoid bias, we use the same prompt as TS5 and choose
GPT-3.5 [4] as the base model, which is widely used. Despite this, it achieves an
accuracy of only 65.6%, possibly due to the domain-specific nature of our task,
which may not be well understood by GPT-3.5, as it primarily focuses on question-
answering tasks.

4 Evaluation

To evaluate PEDECc, we have collected a large-scale dataset of publicly available Google
Workspace add-ons (Section 4.1). Following this, we scrutinized the dataset for excessive
permission issues, focusing on three key research questions (RQs).

— RQ1. What is the performance of PEDEc in detecting excessive permissions for
add-ons (refer to Section 4.2)?

— RQ2. What is the proportion of add-ons that requested excessive permissions, as
reported by PEDEc (Section 4.3)?

— RQ3. What are the root causes for excessive permissions (Section 4.4)?

RQ1 assesses the reliability and effectiveness of PEDEc, while RQ2 provides in-
sights into the compliance of add-ons. Finally, RQ3 is essential for developers of Google
Workspace and add-ons to address the issue of excessive permission requests.

4.1 Dataset Overview

We employ a web crawler to gather data from the Google Workspace Marketplace.
Due to the absence of a comprehensive list of add-ons, we leverage its search func-
tionality, utilizing the 10,000 most common English words provided by Google [1] as
keywords. Following a de-duplication process, we acquire a total of 3,756 add-ons.
Among the acquired add-ons, 123 add-ons are excluded as they are tailored for non-
English users. Additional 228 add-ons are identified with publicly accessible source
code post-installation in Google developer mode, consequently selected for our code
analysis. The majority of the add-ons (1,414) are developed for Google Spreadsheets,
with a smaller number designed for Google Forms, as detailed in Table 2. Notably,
two-thirds of the add-ons (2,515) are available for free, while 239 add-ons offer free
trials, and 198 add-ons feature premium services.
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Table 2: Dataset overview

Feature| Category Number of add-ons
Google drive 681
Gmail 430
Google calendar 167
Google doc 566
Host  |Google sheets 1414
Google slides 274
Google forms 171
Google classroom 12
No Host 408
Free 3285
Paid 34
Charge e trral 239
Free charge paid features 198

Table 3: Performance over sets of oauthScope permissions

Permission set| TP TN FP FN|TPR TNR Accuracy
See 16 80 3 1|94% 96% 96%
Edit 15 79 3 3(83% 96% 94%
Create 37 58 2 3193% 97% 95%
Delete 42 56 1 1/98% 98% 98%
Manage 21 71 1 7|75% 99% 92%
Total 131 344 10 15{90% 97% 95%

4.2 RQI1: PEDEc Accuracy

Ground Truth Annotation. Given the absence of prior work and benchmarks, we man-
ually curate a benchmark dataset. We randomly select 100 add-ons from our collected
dataset and engage three annotators with computer science backgrounds—comprising
one final-year undergraduate, one master’s student, and one PhD student. To standard-
ize the assessment of excessive permissions, we formulate explicit labelling instruc-
tions °, drawing inspiration from established definitions in the literature and common
practices [20, 26]. The instructions include definitions for excessive permissions and
functionality permissions, aiming to address individual perceptions. To clarify nuanced
cases, such as permissions on all files or currently interacted files, we provide illustra-
tive examples. Throughout the annotation process, annotators adhere to the guidelines,
install and interact with add-ons using our testing account, and identify instances of
excessive permissions. In disagreements, annotators and we collectively resolve differ-
ences, seeking input from a security expert with eight years of experience (2015-) as
needed. The Kappa score for annotator agreement is 0.844, signifying nearly perfect
agreement (above 0.81) according to established criteria [38].

PEDEc Performance. We initiate our analysis with the 100 annotated add-ons. In
Table 3, we present the true positive (TP), false positive (FP), true negative (TN), and
false negative (FN) rates of PEDEc. We define the excessive permission as positive and
the non-excessive permission as negative. Thus, TP denotes that the excessive permission

¢ Available at https://github.com/CoTestAccount/third-party-application
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is detected by both PEDEc and human annotators, while FP indicates that PEDEc marks
the permission as excessive, whereas human annotators determine it as non-excessive.

PEDEC achieves a promising performance, we evaluate PEDEC’s performance on
each positive and negative case using the top-5 7 requested permission sets. As shown
in Table 3, PEDEc achieves an average of 90% TPR and 97% TNR. Notably, for the
highly sensitive permission like delete, PEDEc can achieve 98% TPR and 98% TNR.
The performance of PEDEc on the add-on level is presented in Table 4. It showcases the
ability to accurately identify add-ons with (or without) excessive permissions, achieving
a high accuracy of 95%.

Table 4: Overall performance of PEDec on Ground Truth

TP TN FP FN|TPR TNR Accuracy
61 34 0 5[92% 100% 95%

We conduct a manual inspection to investigate the low TPR associated with the

“manage” permission, as illustrated in Table 3. Discussions with annotators reveal that
the complexity lies in the compound nature of “manage”, encompassing a series of
permissions that vary across different host applications. Further scrutiny of the Google
Workspace developer page [5] unveils that “manage” includes permissions like “modify”
and “share with other users spreadsheets that this application has been installed in”.
While we did sample “manage” hypotheses in Section 3.3 and assigned the correct
label as training data, our model struggles to capture such fine-grained scopes without
additional information. As depicted in Table 3, “manage” exhibits a relatively low TPR
compared to others. A potential solution involves splitting the compound permission
into a series of permissions, as demonstrated in Table 5, necessitating additional manual
effort for corpus relabeling.
API Call Identification Performance. We additionally evaluate the accuracy of our
lightweight code analysis tool. We randomly sample 20% (50 out of 228) of add-ons and
perform a manual inspection of the code analysis performance. Leveraging Google’s de-
tailed mapping from each Host API to the required permissions in the Google Developer
Documentation [9], we employ the fine-grained Host API Coverage (detector/ground-
truth) as a metric to gauge PEDEC’s effectiveness in capturing all functionality-related
Host APL.

PEDk&c fails to detect API calls in four add-ons. After investigating through source
code screening, we discover that two add-ons employ code obfuscation, rendering PEDEc
designed for readable source code ineffective. Additionally, two add-ons utilize outdated
APIs no longer supported by Google. For the remaining 46 add-ons, the API coverage
stands at 100%.

4.3 RQ2: Landscape of Add-ons

We then apply PEDEc to analyze all collected add-ons. It identifies that 56% (2,091 out
of 3,756) of them have excessive permissions. Table 7 breaks down the service with
excessive permissions across different installation ranges and particular permissions.
The most common (40%, 1,484 out of 3,756) excessive permission is delete, where the

7 The remaining one is “send’, comprising only one record.
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Table 5: Manage under different scenarios

L Wan, C Yan, MH Meng, K Wang and H Wang

Manage permission

Compound permissions

Manage spreadsheets that this add-on has
been installed in.

Modify spreadsheets that this add-on has been installed in.
Share with other users spreadsheets that this add-on has been installed in.

Manage your forms in Google drive.

Create new forms.
Modify existing forms.
Submit form responses.
Process form responses.
Share forms with others.

Manage forms that this add-on has been
installed in

Modify forms that this add-on has been installed in.

Share with other users forms that this add-on has been installed in.
Process responses to forms that this add-on has been installed in.

Table 6: Co-occurrence analysis of excessive permission set

Co-occurrence | See Edit Create Delete Manage
See 772 587 635 660 130
Edit - 631 611 622 113
Create - - 1257 1220 172
Delete - - - 1484 186
Manage - - - - 603
Co-occurrence |Sheets Slides Docs Form Gmail
Sheets 1204 101 229 87 16
Slides - 246 101 29 4
Docs - - 532 52 5
Form - - - 158 4
Gmail - - - - 45

Table 7: Proportion of excessive permission requested by add-ons. “E” represents “Ex-
cessive” (i.e., the number of add-ons that contain excessive permissions), “N” represents
“Non-Excessive” (i.e., the number of add-ons that contain no excessive permissions) ,and
“T” represents “Total” (i.e., the total number of add-ons)

Add-ons’ installation distribution

Add-ons with excessive permissions on the oauthScope set

App 0-1000  {1000-1 Million|1 Million+| See Edit Create | Delete Manage

E NET| E N ET|/ENET| EET EET EFET EET E E/T
Gmail 39 127 0.23| 65178 0.27| 8 13 0.38| 71 0.17| 25 0.06| 350.08| 550.13| 17 0.04
Google Docs 111 350.76/259 90 0.74|56 15 0.79|150 0.27|128 0.23|275 0.49|290 0.51|157 0.28
Google Sheets 417 142 0.75|598 173  0.78|68 16 0.81|353 0.25|306 0.22|713 0.51|835 0.59|342 0.24
Google Slides 41 14 0.75/149 27 0.85|36 7 0.84/102 0.37| 78 0.28|156 0.57|163 0.59| 82 0.30
Google Forms 11 20.85| 84 30 0.74|35 90.80| 44 0.26| 44 0.26| 70 0.41| 73 0.43| 99 0.58
Google Calendar 27 43 0.39| 40 50 0.44| 1 60.14] 290.17| 11 0.07| 12 0.07| 41 0.24| 7 0.04
Google Drive 38 500.43|153 432 0.26/26 68 0.28|150 0.20| 91 0.12|127 0.17|136 0.18| 36 0.05
No Host 47 880.35[137 12 0.92{12 17 0.41| 92 0.23| 52 0.13| 59 0.14|114 0.28| 11 0.03
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add-on does not provide delete files or folder functionality but requests this permission.
We observe that the issue of excessive permissions is quite prevalent at 17% for editing
files, 16% for managing (including sharing) files, and 20% for seeing files. Despite its
prevalence, excessive permissions remain a significant issue in many widely-used add-
ons, particularly those with over one million installations. Table 7 shows that add-ons
designed for Google Docs, Sheets, Slides, and Forms have a higher proportion with
excessive permissions, considering their rich functionality. We conclude the root cause
in RQ3 as an exploration and alert for developers of Google Workspace and add-ons.

We conduct an analysis of the distribution of co-occurrence of detected excessive
permissions, as depicted in Table 6. To streamline the presentation, we exclusively
showcase the upper triangular matrix due to its symmetrical nature. It is noteworthy that
when the permission “edit” is present, “delete” is identified as an excessive permission
in nearly 98.6% of cases (622 out of 631). Although “delete” is the most frequently
detected excessive permission, it often co-occurs with “edit” (41.9%, 622 out of 1484),
“manage” (12.5%), and “see” (44.5%). Additionally, a noteworthy observation is that
a substantial portion of add-ons designed for Google Sheets are flagged for excessive
permissions, frequently requesting such permissions for Docs (19.0%, 229 out of 1204),
Slides (8.4%), and Gmail (1.3%).

4.4 RQ3: Root Causes (RCs) and Case Study

After discovering that approximately half of the add-ons request excessive permissions,
we delve deeper into their Root Causes (RCs) to gain a comprehensive understanding
of excessive permissions. We randomly select and manually inspect 50 (out of 2,091)
services with excessive permissions. Based on the types of RCs, we categorize them
into the following three groups. The first two types stem from permission management
issues on the platform operator’s side (i.e., Google in our study), while the last type is
associated with poor implementation practices from the add-on developers. Each type
of RC is elucidated through detailed example.

RC1: Permission Bundle (30 add-ons). When permissions are grouped into bundles,
there is an increased risk of excessive permissions. Specifically, the add-on has to request
the entire group of permissions even if only part of them is functionality-required. This
all-or-nothing implementation of permissions contributes to security threats in Google
Workspace [21]. This Root Cause (RC) is the primary factor behind excessive permis-
sions in popular add-ons like Box (more than one million installations, 1M+ for short
hereafter), DocuSign eSignature (2M+), and Auto-LaTex Equations (10M+). Based on
their types, the permission bundle can be further classified into two categories: bundled
operations and bundled objects. MathType (10M+) functions as a math equations and
chemical formulas editor for Google Docs. The correct permissions for its functionality
are “see” and “modify”. However, the issue arises as “see” and “modify”, and “share”
permissions are bundled into one group. This bundling requires MathType to request the
excessive “‘share” permission, even though it is not strictly necessary for its functionality.
RC2: Coarse-grained Permission Management (20 add-ons). Google’s current per-
mission management system employs a general and broad permission coverage, inad-
vertently exposing more data than intended by the developers. Zoom for Gmail (12M+)
enables users to respond to meeting schedules. Only the email title is needed for setting
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Fig. 5: Distribution of permission scope

the meeting topic, and the remaining content (i.e., body content, attachment) is non-
relevant to the functionality. However, Google provides no fine-grained permission to
exclusively view the email title. By requesting the “see” permission, Zoom can access
all the content of emails.

RC3: Extra Permissions Requested by Add-ons (12 add-ons). There is a tendency
for the add-ons to frequently request excessive permissions under a loosely managed
permission scheme [47]. As depicted in Figure 5, around two-thirds of add-ons request
“All permissions on all files” instead of the more restricted permission option of “All
permissions on currently interacted files”. Bjorn’s NAV-thumbs (607) offers features
for navigation in Google Slides. While it requires permission to “see and edit all your
Google Slides presentations” for its functionality, it also requests excessive permissions
permissions such as “see, edit, create and delete all your Google Docs documents”,
raising privacy and security concerns. It is alarming that such requested permissions
passed the vetting process.

5 Limitations and Discussion

5.1 Limitations

Quality of Tutorial Images and Videos. Developers are required to supply demonstra-
tion images, but the use of low-quality images may adversely affect PEDEc performance.
Our evaluation indicates that developers of popular services with a large user base tend
to offer high-quality images and comprehensive demonstration videos. In contrast, de-
velopers with a smaller user base may not provide clear tutorials.

NLP Performance. PEDEc relies on the functionality materials and employs the Natural
Language Inference (NLI) and TS5 methods to extract excessive permissions. However,
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there is still a failure rate of 13% due to inherent limitation of Natural Language
Processing (NLP) techniques.

5.2 Discussion

PEDECc heavily relies on dynamic analysis of runtime behavior and NLP techniques to
infer excessive permissions. Each time the add-ons receive a new update, the tool must
be rerun to check for excessive permissions. In the future, we plan to explore strategies
that only consider the new update to re-detect excessive permissions. Additionally, since
Google frequently updates their host API documentation, PEDEc should be able to
capture such updates in a timely manner.

6 Related Work

Static Code Analysis. To assess the security of software permissions and safeguard
user data, many researchers explore static code analysis [19] and API call graphs.
Taint analysis is widely employed in add-ons for mobile apps, identifying numerous
permission escalation [21,45]. Given our emphasis on Host API call detection, existing
call-graph or data-flow analysis designed for JavaScript, as demonstrated in previous
research [32], are unsuitable for our tasks. In our work, we employ a lightweight API
call analysis to recognize all functionality-related Host API calls.

Dynamic Web Testing and Enhancement. To ensure the quality and usability of web
applications, many researchers explore dynamic testing in both black-box and white-box
contexts [31-33,35,37]. Given that human interaction serves as the primary commu-
nication between web applications and users [39], the most common automated testing
methods [40] are based on user profiles (e.g., name, gender and license number) or
scenarios (e.g., shopping websites). Gao et al. [24] investigate the ecosystem of account
registration bots. Their experiments suggest that the most prevalent human verification
methods, including SMS, CAPTCHA, and IP restrictions, can be successfully bypassed
by anti-human verification services. However, owing to the complexity and customiza-
tion of modern web applications, dynamic automated GUI testing tools [33] that simulate
human operations (e.g., login, click or scroll) cannot guarantee the triggering of all web
paths. We acknowledge this inherent limitation and utilize tutorial images/videos as
supplements.

Excessive Permission Detection in Android. Many studies have analyzed excessive
permissions in Android apps [41,42,46,49]. Whyper [41] and Autocog [42] leverage the
app’s description and counterpart to infer permissions that are irrelevant to functionality.
Pscout [19] and Taintmini [45] construct call graphs and track sensitive data flow to
detect excessive permissions. These approaches require access to source codes or a large
app base for accuracy and reliability in clustering app functionality. However, addressing
the domain-specific challenges existing in Google Workspace is necessary due to the
limited size and closed nature of the data.
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7 Conclusion

The add-on enhances customization options but also introduces new security concerns
related to excessive permissions. They may request access to more permissions than
necessary, potentially putting user’s data at risk. It is important to carefully review
the permissions requested by the add-on and consider whether they are necessary for
its functionality. To our best knowledge, no prior work has provided such automated
checks for excessive permissions of the add-on that may lead to security issues, and our
work addresses this gap. In this paper, we design a tool called PEDEc to automatically
check whether the add-on requests excessive permissions. Ground truth evaluation shows
that PEDEc performs well, achieving 100% TNR and 92% TPR in checking excessive
permissions.
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